Presentation is loading. Please wait.

Presentation is loading. Please wait.

LNF-INFN Frascati. BTF Peak luminosity evolution in 2004-5 Luminosity is what matter…in our case L = 1.46 10 32 cm -2 s -1 (to day) …..and the physics….

Similar presentations


Presentation on theme: "LNF-INFN Frascati. BTF Peak luminosity evolution in 2004-5 Luminosity is what matter…in our case L = 1.46 10 32 cm -2 s -1 (to day) …..and the physics…."— Presentation transcript:

1 LNF-INFN Frascati

2 BTF

3 Peak luminosity evolution in 2004-5 Luminosity is what matter…in our case L = 1.46 10 32 cm -2 s -1 (to day) …..and the physics…. KLOE FINUDA LUCE DI SINCROTRONE FISICA di MACCHINA-SRFF FASCI ESTRATTI

4 KLOE – (K LOng Exp.) DAFNE e+e-    KK is a source of monochromatic correlated low energy Kaons FINUDA Kaons absorbed by nuclei Sistematic study of exotic nuclei DAFNE experiments KLOE is running his year

5 KLOE FINUDA exotic nuclei SIDDHARTA Kaonic atoms SRFF ? TODAY 2006 2007 2008 The program is well defined for the coming three years FINUDA exotic nuclei

6 KLOE physics results: Vus from KL, KS and charged K’s Kaon form factors Pion form factors/g-2 Ks rare decays charged kaon decays KS semileptonic decays KL branching ratios KL life time KS to   radiative decays eta decays KO-KObar interference

7 1)Collect 2 fbarn-1 on  resonance – end of the current year 2) Scan over the  resonance 50 pbarn-1 3) 250 pbarn-1 at 1000MeV, below the , to measure pion form factors 1st April 2006 END of KLOE 2006 Nuclear Physics with FINUDA 2007 Kaonic Atoms with SIDDHARTA 2008 FINUDA and SRFF with DAFNE

8 SC 1.3 GHz cavity Experimental studies on short-bunches and bunch-length modulation at DA  NE SRFF = Superconductive RadioFrequency Focusing EXPERIMENT Longitudinal phase space RF input RF center RF output IP Bunch length Energy spread

9 The 7th and 8th of November we have in Frascati an international workshop on Bunch Dynamics. We hope to have the scientific case at the end of the workshop. You are invited to collaborate You can find the relevant information for the workshop on the web: www.lnf.infn.it

10 What else are we doing

11 1)LNF Experiments in other Laboratories  ATLAS @ CERN LHCb @CERN  DIRAC @ CERN EXPLORER@CERN  LVD @ LNGS OPERA @ LNGS  BABAR @ SLAC AIACE @ TJNAF  CDF @ FNAL BTeV @ FNAL  HERMES @ DESY Accelerators @ DESY, SLAC,CERN  VIRGO @ Cascina  WIZARD @ Pamela

12 June 2005 30 proposals >70 users June 2005 30 proposals >70 users TARI1+I3 EU@SINBAD 2) Use of the Synchrotron light lines 2) Synchrotron light facility much used by external users

13 Control room § Flux: 1  10 10 particles/pulse § Energy: 25  750 MeV § Repetition rate 50 Hz § Pulse Duration 1 or 10 ns § p resolution: 1% § Spot size  x,y ≈ 2 mm Electrons Positrons and Tagged Photons beams 3)Beam Test Facility

14 4)CNAO GSI RFQ+linac Scanning and monitoring stations Centro Nazionale di Adroterapia Oncologica A proton synchrotron In the hospital of Pavia

15 LNF-AD participates to the Assembling Commissioning First running Technology transfer

16 Delay Loop and transfer line final lay-out Transfer line: installed and commissioned. Delay Loop: installation spring-summer 2005, commissioning autumn 2005 D.Alesini, G.Benedetti, C.Biscari, R.Boni, M.Castellano, A.Clozza, A.Drago, D.Filippetto, A.Gallo, A.Ghigo (resp), F.Marcellini, C.Milardi, L.Pellegrino, B.Preger, M.A.Preger, R.Ricci, C.Sanelli, M.Serio, F.Sgamma, A.Stecchi, A.Stella, M.Zobov + Accelerator Division Technical Staff

17 5) At CERN CTF3 (CLIC Test Facility) Delay Loop, transfer line, combiner ring

18 S orgente P ulsata A uto-amplificata R adiazione C oerente Self-Amplified Pulsed Coherent Radiation 6) FEL nei LNF L.Palumbo

19 LINAC UNDULATOR synchronisation uncompressed pulse vacuum compressor acceleration chamber detectors area control & data

20 6) High Intensity Laser Laboratory

21 7) Experimental setup for LWFA acceleration of externally injected electrons in a gas-jet plasma TeraWatt GigaVolt/m Frascati Laser for Acceleration and Multidisciplinary Experiments Approved: The construction is starting now

22 FEL for X-rays Covering from the VUV to the 1 Å X-ray spectral range Approved 12.41.240.124 (nm) Brilliance of X-ray radiation sources SPARX 8) SPARC-X

23 Linac1: Low Energy section RF gun

24 Linac2: High energy section Now : E tot ~ 1.2 GeV dogleg start E tot ~ w 4 S-band : 1.5 GeV e -, 1GeV e + E tot ~ w 4 X-band 2 GeV e -

25 PROGRAM 2005 2006 2007 2008 2009 2010 KLOE END------------------------------------- FINUDA ---------------------------------------END-------------- SIDDARTHA ---------------------------------------END-------------- LHC -------------------------------------------------------------------------------- SPARC ---------------------------------------END SPARCX ---------------------------------------------------------------START------ FLAME ----------------------------------------START------------------------------ CTF3 ---------------------------END CNAO ----------------------------------------END BTF -------------------------------------------------------------------------------- SYNCH.LIGHT------------------------------------------------------------------------------- BABAR ----------------------------------------END CDF ----------------------------------------------------END HERMES ----------------------------------------------------END OPERA ---------------------------END---------------------------------------------- ILC -------------------------------------------------------------------------------

26 What about the short range future ? WE ARE THINKING ABOUT the possible DAFNE UPGRADE in luminosity AND energy To do what? 1)To complete the Kaon physics program 2)To measure the P, N,  time like form factors 3)To measure  interactions below 2.4 GeV 4)To measure the total cross section 5)To continue the systematic studies of exotic heavy and light nuclei 6)To have the most advanced accelerator technology 7)To have an even more intense Synchrotron light source

27 Starting point for the accelerator design Total Energy (GeV) 1.022.4 Integrated Luminosity per year (ftbarn -1 ) 8 Total integrated luminosity 203 Peak luminosity > (cm -1 sec -2 ) 8 10 32 10 32 DAFNE2 e+ e- collider Optimized to run on the  meson but able to go up in energy

28 Two rings One IR SKETCH OF NEW LAYOUT DAFNE HALL EXP Rf cavities wigglers DAFNE2

29 Injection system upgrade The proposed transfer lines pass in existing controlled area Additional shielding needed in the area between the accumulator and DAFNE buildings new e- line new e+ line accumulator BTF DAFNE2 SPARCX

30 RF system A possible candidate cavity 500 MHz SC cavity operating at KEKB Higher frequencies – lower acceptance Lower frequencies – higher voltage R&D on SC cavities with SRFF experiment in DAFNE

31 Why wigglers are important? To achieve the short damping times and ultra-low beam emittances needed in LC Damping Rings To increase the wavelength and/or brightness of emitted radiation in synchrotron light sources To increase radiation damping and control emittance in colliders E. Levichev We can make use of the recent progress in SUPERCONDUCTING wiggler technology Operating experiences: CESRc, ELETTRA, CAMD R&D in progress: ILC, ATF, PETRA3, …

32 Use of DAFNE2 as Synchrotron light source Beam Energy (GeV) 0.511.2 Beam Current (A) 2.50.5 B dipoles field (T) 0.771.8 B wigglers field (T) 4. New scenarios

33 CONCLUSIONS VERY ACTIVE Laboratory for the coming three-four years INFN will define the future of the Lab in the course of 2006

34 Frascati National Labs (LNF) Lab footprint 135000 m 2 Total Staff 368 Researchers 98 Technologist/ Engineers 62 Technicians 167 Administration/ Services 41 External Users 323 Italian 252 Foreigners 71 Visitors 3200 Stages 170

35  N-N Energy per beamE GeV 0.511.2 CircumferenceC m 100 LuminosityL cm -2 sec -1 8 10 32 10 32 Current per beamI A 2.50.5 N of bunchesNbNb 15030 Particles per bunchN10 3.13.4 Emittance  mm mrad 0.30.6 Horizontal beta* xx m 11 Vertical beta* yy cm 12 Bunch length LL cm 12 Coupling  % 11 Energy lost per turnUoUo (keV) 25189 H damping time xx (msec) 135 Beam PowerPwPw (kW) 62 (55w + 7d)94.6 (42w + 53d) Power per meterP w /m (kW/m) 8.6w + 0.5d8.4w + 3.8d

36 DA  NE the 16th of September L peak = 1.46 cm -2 sec -1 Integrated luminosity = 8.8 pbarn -1 /day KLOE WILL STOP DAQ END 2005 With 2000 pbarn-1 integrated


Download ppt "LNF-INFN Frascati. BTF Peak luminosity evolution in 2004-5 Luminosity is what matter…in our case L = 1.46 10 32 cm -2 s -1 (to day) …..and the physics…."

Similar presentations


Ads by Google