Presentation is loading. Please wait.

Presentation is loading. Please wait.

Start with a 120/240 multiwire branch circuit.. E= I= R= P= E= I= R= P= E= I= R= P= We’ll need to begin with some given values.

Similar presentations


Presentation on theme: "Start with a 120/240 multiwire branch circuit.. E= I= R= P= E= I= R= P= E= I= R= P= We’ll need to begin with some given values."— Presentation transcript:

1 Start with a 120/240 multiwire branch circuit.

2 E= I= R= P= E= I= R= P= E= I= R= P= We’ll need to begin with some given values.

3 E=120V I= R= P= E=120V I= R= P= E=240V I= R= P=

4 Now lets add a load to each circuit. E=120V I= R= P= E=120V I= R= P= E=240V I= R= P=

5 Now lets add a load to each circuit. E=120V I= R= P=100W E=120V I= R= P=200W E=240V I= R= P=

6 Then calculate amps and resistance for each load. E=120V I= R= P=100W E=120V I= R= P=200W E=240V I= R= P=

7 Then calculate amps and resistance for each load. E=120V I= R= P=100W E=120V I= R= P=200W E=240V I= R= P=

8 Then calculate amps and resistance for each load. E=120V I=P/E R= P=100W E=120V I= R= P=200W E=240V I= R= P=

9 Then calculate amps and resistance for each load. E=120V I=0.8333A R= P=100W E=120V I= R= P=200W E=240V I= R= P=

10 Then calculate amps and resistance for each load. E=120V I=0.8333A R=E²/P P=100W E=120V I= R= P=200W E=240V I= R= P=

11 Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I= R= P=200W E=240V I= R= P=

12 Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=P/E R= P=200W E=240V I= R= P=

13 Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R= P=200W E=240V I= R= P=

14 Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=E²/P P=200W E=240V I= R= P=

15 Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

16 With these values known, we can begin to understand what happens when the neutral is opened. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

17 First, we’ll open the neutral conductor. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

18 First, we’ll open the neutral conductor. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

19 In doing so, we no longer have two circuits, but only one. The two loads are now in series. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

20 So we will erase the figures we have calculated so far. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

21 So we will erase the figures we have calculated so far. E= I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

22 So we will erase the figures we have calculated so far. E= I= R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=

23 So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E=120V I=1.6667A R=72 W P=200W E=240W I= R= P=

24 So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E= I=1.6667A R=72 W P=200W E=240V I= R= P=

25 So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E= I= R=72 W P=200W E=240V I= R= P=

26 So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R= P=

27 Now add the values of the two loads’ resistances. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R= P=

28 Now add the values of the two loads’ resistances. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R=144+72 P=

29 Now add the values of the two loads’ resistances. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R=216 W P=

30 Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R=216 W P=

31 Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=E/R R=216 W P=

32 Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=

33 Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=E²/R

34 Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

35 Since this is a series circuit, I is always the same. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

36 Since this is a series circuit, I is always the same. E= I=1.1111A R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

37 Since this is a series circuit, I is always the same. E= I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

38 Now calculate the voltage across each of the two loads. E= I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

39 Now calculate the voltage across each of the two loads. E=R*I I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

40 Now calculate the voltage across each of the two loads. E=160V I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

41 Now calculate the voltage across each of the two loads. E=160V I=1.1111A R=144 W P= E=R*I I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

42 Now calculate the voltage across each of the two loads. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

43 Now you can see what happens when you lose the neutral on a multiwire branch circuit. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

44 The more resistance, the higher the voltage.... E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

45 The less resistance, the lower the voltage. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W

46 This is Ohm’s Law in a most practical use, and the reason Article 300.13(B) exists. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W


Download ppt "Start with a 120/240 multiwire branch circuit.. E= I= R= P= E= I= R= P= E= I= R= P= We’ll need to begin with some given values."

Similar presentations


Ads by Google