Presentation is loading. Please wait.

Presentation is loading. Please wait.

Advisors Dr. Liguang Tang (http://www.jlab.org/~tangl) Dr. Dave Mack (http://www.jlab.org/~mack) Nuruzzaman (http://www.jlab.org/~nur/) APS April Meeting.

Similar presentations


Presentation on theme: "Advisors Dr. Liguang Tang (http://www.jlab.org/~tangl) Dr. Dave Mack (http://www.jlab.org/~mack) Nuruzzaman (http://www.jlab.org/~nur/) APS April Meeting."— Presentation transcript:

1 Advisors Dr. Liguang Tang (http://www.jlab.org/~tangl) Dr. Dave Mack (http://www.jlab.org/~mack) Nuruzzaman (http://www.jlab.org/~nur/) APS April Meeting 1 st May 2011 Beam Modulation for the Q p weak Experiment

2 2 The objective of the Q p weak experiment is to measure the parity violating asymmetry (~250ppb) in elastic electron-proton(e-p) scattering to determine the proton's weak charge with an uncertainty of 4%.[1] Basics Experimental Setup Hardware Analysis Summary [1] http://www.jlab.org/qweak/ A PV = σ + - σ - _______ σ + + σ - The e-p scattering asymmetry depends on the five beam parameters: horizontal position (X), horizontal angle (X΄), vertical position (Y), vertical angle (Y΄) and energy (E). A measured = A 0 + ∂A ∂T i ∆T i ∑ i T i = X, X´, Y, Y´ & E ∂T i ∂A = detector sensitivity The goal of the Injector group is to keep these helicity-correlated parameters as small as possible. The goal of our beam modulation group is to measure the detector sensitivities to correct remaining false asymmetry.

3 3 Beam Position Monitor Modulation Coil Pair Hall-C Injector Accelerator Basics Experimental Setup Hardware Analysis Summary 1 st Pair of Coils 2 nd Pair of Coils

4 4 Basics Experimental Setup Hardware Analysis Summary 35 cm Liquid Hydrogen Target Primary Collimator with 8 openings Drift Chambers Toroidal Magnet Drift Chambers Elastically Scattered Electron Eight Fused Silica (quartz) Čerenkov Detectors - Integrating Mode Luminosity Monitors ~3.2 m

5 Bench Test and Results VME Signal Generator IOC 5 We choose frequency 125 Hz to be in linear region

6 1 st Coil2 nd Coil Dipole 3C05 Dipole 3C06 Dipole 3C07 6 Hall C Beamline Zoomed In Target z x / y θ1θ1 θ2θ2 θ1θ1 II I I Z=0 Z=d 1 Z=d 2 Where Basics Experimental Setup Hardware Analysis Summary Ref: http://www-bdnew.fnal.gov/pbar/organizationalchart/lebedev/OptiM/optim.htm http://www-bdnew.fnal.gov/pbar/organizationalchart/lebedev/OptiM/optim.htm

7 7 Basics Experimental Setup Hardware Analysis Summary X X´ Y Y´ E

8 Phase BPM-X Signal [mm] Phase FGX1 [V] FGX2 [V] BPMX [mm] BPMY [mm] Horizontal Position OPTIM Data 8 Basics Experimental Setup Hardware Analysis Summary

9 Phase MD2 YIELD [mV/µA] MD1 YIELD [mV/µA] MD8 YIELD [mV/µA] MD5 YIELD [mV/µA] MD4 YIELD [mV/µA] MD6 YIELD [mV/µA] MD3 YIELD [mV/µA] MD7 YIELD [mV/µA] 9 Basics Experimental Setup Hardware Analysis Summary 3 7 15 4 6 2 8

10 Target X [mm] Sensitivity = 896.9 ± 174.6 ppm/mm Target X [mm] MD2 YIELD [mV/µA] MD1 YIELD [mV/µA] MD8 YIELD [mV/µA] MD5 YIELD [mV/µA] MD4 YIELD [mV/µA] MD6 YIELD [mV/µA] MD3 YIELD [mV/µA] MD7 YIELD [mV/µA] Target X [mm] MDAll YIELD [mV/µA] 3 7 15 4 6 2 8 Sensitivity = 773.3 ± 264.2 ppm/mm 10 Basics Experimental Setup Hardware Analysis Summary

11 11 Coil positioning and tunes were achieved using OPTIM simulation. Hardware and software are tested and working. Taking data and extracting detector sensitivities. Basics Experimental Setup Hardware Analysis Summary

12 Basics Calculation Experimental Setup Analysis Summary A. Almasalha, D. Androic, D. Armstrong, A. Asaturyan, T. Averett, J. Balewski, R. Beminiwattha, F. Benmokhtar, J. Benesch, J. Birchall, C. Capuano, R.D. Carlini 1 (Principal Investigator), G. Cates, J. Cornejo, S. Covrig, M. Dalton, C. A. Davis, W. Deconinck, J. Diefenbach, K. Dow, J. Dowd, J. Dunne, D. Dutta, R. Ent, J. Erler, W. Falk, J.M. Finn 1*, T. A. Forest, M. Furic, D. Gaskell, M. Gericke, J. Grames, K. Grimm, D. Higinbotham, M. Holtrop, J.R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, K. Joo, J. Kelsey, C. Keppel, M. Khol, P. King, E. Korkmaz, S. Kowalski 1, J. Leacock, J.P. Leckey, A. Lee, J.- H. Lee, L. Lee, N. Luwani, S. MacEwan, D. Mack, J. Magee, J. Mammei, J. Martin, M. McHugh, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, K. E. Myers, A. Narayan, Nuruzzaman, A. K. Opper, S.A. Page 1, J. Pan, K. Paschke, S. Phillips, M. Pitt, M. Poelker, W. D. Ramsay, M. Ramsey-Musolf, J. Roche, B. Sawatzky, T. Seva, R. Silwal, N. Simicevic, G. Smith 2, T. Smith, P. Solvignon, P. Souder, D. Spayde, A. Subedi, R. Subedi, R. Suleiman, E. Tsentalovich, V. Tvaskis, W.T.H. van Oers, B. Waidyawansa, P. Wang, S. Wells, S. A. Wood, S. Yang, R. Young, S. Zhamkochyan 1 Spokespersons, *Deceased 2 Project Manager College of William and Mary, University of Connecticut, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, University of Wisconsin, Hendrex College, Louisiana Tech University, University of Manitoba, Massachusetts Institute of Technology, Thomas Jefferson National Accelerator Facility, Virginia Polytechnic Institute & State University, TRIUMF, University of New Hampshire, Yerevan Physics Institute, Mississippi State University, University of Northern British Columbia, Ohio University, Hampton University, University of Winnipeg, University of Virginia, George Washington University, Syracuse University, Idaho State University, University of Connecticut, Christopher Newport University, University of Zagreb (Funded by DOE, NSF, NSERC and the State of VA)

13 13 Basics Experimental Setup Hardware Analysis Summary

14 14 Basics Experimental Setup Hardware Analysis Summary Y = p 0 (1 + p 1 x + …) ~ p 0 + p 0 p 1 x … Y + - Y - Y + + Y - A = p 0 p 1 (x + - x - ) 2p 0 + p 0 p 1 (x + + x - ) = = (x + - x - ) 2 + (x + + x - ) p1p1 …

15 15 CHL-2 Upgrade magnets and power supplies Enhance equipment in existing halls 6 GeV CEBAF 11 12 Add new hall C A B Basics Experimental Setup Hardware Analysis Summary

16 16 ABC Dipole Quadrupole 1 st Pair of Coils Basics Experimental Setup Hardware Analysis Summary

17 Horizontal PositionHorizontal AngleVertical PositionVertical AngleEnergy Change 17 Basics Experimental Setup Hardware Analysis Summary

18 18 θ1θ1 θ2θ2 θ1θ1 II I I Z=0 Z=d 1 Z=d 2 Where Basics Calculation Experimental Setup Analysis Summary

19 19 Conserves ParityViolates Parity M NC M EM σ + - σ - 2 M NC A PV = _______ σ + + σ - _______ M EM ~~0.2 ppm A PV = _______ - G F 4πα√ 2 [Q 2 Q p w + Q 4 B(Q 2 )] As Q 2 → 0, θ → 0 Hadronic contribution contains G γ E,M and G z E,M ↑ Weak Charge Q p w = 1- 4sin 2 θ w ↑ σ = |M EM | 2 + 2 |M EM | |M NC | *+ … Basics Experimental Setup Hardware Analysis Summary

20 Beamline Coils X1X1 Y1Y1 Y2Y2 X2X2 SRF E BSY Service Building BMOD1BMOD1 X1X1 X1X1 Y1Y1 Y1Y1 X2X2 X2X2 Y2Y2 Y2Y2 LEM Current Transducer X1X1 Y1Y1 Y2Y2 X2X2 TRIM-I Power Amp. BPMs BMOD2BMOD2 Hall-C GUI CONSOLE Q p weak PV Daq. Q p weak Cage I O C hCnmrhCnmr TRIUMF ADC JLAB ADC 20 Basics Experimental Setup Hardware Analysis Summary

21 21 Basics Experimental Setup Hardware Analysis Summary

22 22 Beam Position Monitor Modulation Coil Pair Hall-C Injector Accelerator Basics Experimental Setup Hardware Analysis Summary C A B

23 23 Basics Calculation Experimental Setup Analysis Summary ABC Dipole Quadrupole 1 st Pair of Coils

24 Horizontal Position 24 Basics Experimental Setup Hardware Analysis Summary OPTIM Data

25 3 7 15 4 6 2 8 25 Basics Experimental Setup Hardware Analysis Summary BPM 3H09BX [mm] MD ALL YIELD [mV/A]

26 26 Basics Calculation Experimental Setup Analysis Summary D. Androic, D. Armstrong, A. Asaturyan, T. Averett, R. Beminiwattha, J. Benesch, J. Birchall, P. Bosted, C. Capuano, R. D. Carlini 1 (Principal Investigator), G. Cates, S. Covrig, M Dalton, C. A. Davis, W. Deconinck, K. Dow, J. Dunne, D. Dutta, R. Ent, J. Erler, W. Falk, H. Fenker, J.M. Finn 1, T. A. Forest, W. Franklin, M. Furic, D. Gaskell, M. Gericke, J. Grames, K. Grimm, D. Higinbotham, M. Holtrop, J.R. Hoskins, K. Johnston, E. Ihloff, M. Jones, R. Jones, K. Joo, J. Kelsey, C. Keppel, M. Khol, P. King, E. Korkmaz, S. Kowalski 1, J. Leacock, J.P. Leckey, J. H. Lee, L. Lee, A. Lung, D. Mack, J. Mammei, J. Martin, D. Meekins, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, K. E. Myers, A. Narayan, Nuruzzaman, A. K. Opper, S. A. Page 1, J. Pan, K. Paschke, S. Phillips, M. Pitt, B. (Matt) Poelker, Y. Prok, W. D. Ramsay, M. Ramsey-Musolf, J. Roche, N. Simicevic, G. Smith 2, T. Smith, P. Souder, D. Spayde, R. Suleiman, E. Tsentalovich, W.T.H. van Oers, B. Waidyawansa, W. Vulcan, P. Wang, S. Wells, S. A. Wood, S. Yang, R. Young, H. Zhu, C. Zorn 1 Spokespersons 2 Project Manager College of William and Mary, University of Connecticut, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, University of Wisconsin, Hendrex College, Louisiana Tech University, University of Manitoba, Massachusetts Institute of Technology, Thomas Jefferson National Accelerator Facility, Virginia Polytechnic Institute & State University, TRIUMF, University of New Hampshire, Yerevan Physics Institute, Mississippi State University, University of Northern British Columbia, Ohio University, Hampton University, University of Winnipeg, University of Virginia, George Washington University, Syracuse University, Idaho State University, University of Connecticut, Christopher Newport University, University of Zagreb (Funded by DOE, NSF, NSERC and the State of VA)

27 27

28 Sensitivity = 896.9 ± 174.6 ppm/mm 3 7 15 4 6 2 8 28 Basics Experimental Setup Hardware Analysis Summary Sensitivity = 2.63 ± 39.35 ppm/mm MD2 YIELD [mV/A] MD1 YIELD [mV/A] MD8 YIELD [mV/A] MD5 YIELD [mV/A] MD4 YIELD [mV/A] MD6 YIELD [mV/A] MD3 YIELD [mV/A] MD7 YIELD [mV/A]

29 29 The objective of the Q p weak experiment is to measure the parity violating asymmetry (~250ppb) in elastic electron-proton(e-p) scattering to determine the proton's weak charge with an uncertainty of 4%.[1] Basics Experimental Setup Hardware Analysis Summary [1] http://www.jlab.org/qweak/ A PV = _______ - G F 4πα√ 2 [Q 2 Q p w + Q 4 B(Q 2 )] σ + - σ - = _______ σ + + σ - The e-p scattering asymmetry depends on the five beam parameters: horizontal position (X), horizontal angle (X΄), vertical position (Y), vertical angle (Y΄) and energy (E). A measured = A 0 + ∂A ∂T i ∆T i ∑ i T i = X, X´, Y, Y´ & E ∂T i ∂A = detector sensitivity The goal of the Injector group is to keep these helicity-correlated parameters as small as possible. The goal of our beam modulation group is to measure the detector sensitivities to correct remaining false asymmetry.


Download ppt "Advisors Dr. Liguang Tang (http://www.jlab.org/~tangl) Dr. Dave Mack (http://www.jlab.org/~mack) Nuruzzaman (http://www.jlab.org/~nur/) APS April Meeting."

Similar presentations


Ads by Google