Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Indicator Displacement Assays for Solute Sensing Julee Byram Mecozzi Group May 10, 2007.

Similar presentations


Presentation on theme: "1 Indicator Displacement Assays for Solute Sensing Julee Byram Mecozzi Group May 10, 2007."— Presentation transcript:

1 1 Indicator Displacement Assays for Solute Sensing Julee Byram Mecozzi Group May 10, 2007

2 2 Chemical Sensors Detect the presence and quantity of a specific analyte or group of analytes Industrial, Environmental, and Clinical Applications

3 3 “Desperately Seeking Sensors” Czarnik, A.W. Chem. Biol. 1995, 2, 7, 423

4 4 “Desperately Seeking Sensors” Selectivity- specific analyte recognition Affinity- high K a value Spectral properties- detectable signal modulation Czarnik, A.W. Chem. Biol. 1995, 2, 7, 423

5 5 Traditional Sensing Method Schematic Reproduced From: Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 20

6 6 Indicator Displacement Assay (IDA) Schematic Reproduced From: Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 20

7 7 Commonly Used Indicators

8 8 IDA Sensing Systems

9 9 Outline Applications and Future Work Designed SensorsMolecularly Imprinted Polymer Sensors Designing Synthetic Receptor Systems Evolved Sensors

10 10 Designing a Receptor Complimentary functional groups  For Binding Diols Boronic Acids  For Binding Carboxylates Ammonium Groups Guanidinium Groups Urea, Thiourea Amide  Metal Interactions Pre-organized Cavity

11 11 Boronic Acids as Binding Groups Complex saccharides and other 1,2- and 1,3-diols Form reversible covalent bonds with diols, creating boronic esters Kinetics of interconversion fast when boron tetrahedral Incorporation of an amine adjacent to the boronic acid creates a tetrahedral sp 3 boron at or near neutral pH Wiskur, S.L. et al. Organic Letters 2001, 3, 9, 1311 Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 16

12 12 Binding Carboxylates Ammonium Guanidinium Urea, Thiourea Amide

13 13 Outline Applications and Future Work Molecularly Imprinted Polymer Sensors Designing Synthetic Receptor Systems Evolved SensorsDesigned Sensors

14 14 Synthetic Citrate Receptors Citrate Guanidinium Groups (Anslyn) Guanidinocarbonyl Pyrrole Groups (Schmuck) 1.3.5-2,4,6-Functionalized Facially Segregated Benzene Scaffold

15 15 Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed. 1997, 36, 862 Hennrich, G.; Anslyn, E.V. Chem. Eur. J. 2002, 8, 2218 Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc. 2005, 127, 3373 yield 63%

16 16 Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed. 1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed. 1998, 37, 649

17 17 Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed. 1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed. 1998, 37, 649 H●I H●C + I 6.9 x 10 3 M -1 2.4 x 10 3 M -1 3.0 x 10 3 M -1 K assoc (H●C)

18 18 Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed. 1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed. 1998, 37, 649 GuestBinding Constant (M -1 ) citrate6.9 x 10 3 tricarballate7.3 x 10 3 succinate2.1 x 10 2 glutarate2.2 x 10 2 acetate<10 ATP 4- 1.2 x 10 3 525 nm

19 19 Citrate Binding Using Guanidinium Groups Concentrations of Citrate in Beverages (mM) NMRAbsorptionEmission Orange Juice43.144.144.7 Gatorade15.9515.0515.1 Powerade12.411.111.3 All Sport7.47.18.1 Mountain Dew7.955.55.4 Tonic Water2121.1520.8 Coca Cola00<0.5 Diet Coke<0.2<0.4<0.7 Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed. 1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed. 1998, 37, 649

20 20 Citrate Binding Using Guanidinocarbonyl Pyrrole Groups Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc. 2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem. 2006, 4, 836 yield 63%

21 21 Citrate Binding Using Guanidinocarbonyl Pyrrole Groups Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc. 2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem. 2006, 4, 836 ++ 1.6 x 10 5 M -1 K assoc (H●C) 518 nm

22 22 Citrate Binding Using Guanidinocarbonyl Pyrrole Groups Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc. 2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem. 2006, 4, 836

23 23 Multi-analyte Differential Sensing Nature often does not use highly selective receptors “Differential” receptors used in arrays Response from each of these receptors for a particular mixture of stimuli creates a pattern

24 24

25 25 Principle Component Analysis (PCA) Buryak, A.; Severin, K. J. Am. Chem. Soc. 2005, 127, 3700

26 26 Artificial Neural Network (ANN) Multi-Layer Perceptron (MLP) Sensor 1 Sensor 2 Sensor 3 Input Output Hidden Greene, N.T.; Morgan, S.L.; Shimizu, K.D. Chem. Commun. 2004, 10, 1172

27 27 Receptors for Tartrate and Malate Sensing Wiskur, S.L. et al. Angew. Chem. Int. Ed. 2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed. 1999, 38, 3666 Similar affinity for bothGreater affinity for tartrate Tartrate Malate Actual Tartrate BindingPredicted Tartrate Binding

28 28 Combined Sensing of Tartrate and Malate Wiskur, S.L. et al. Angew. Chem. Int. Ed. 2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed. 1999, 38, 3666 H●A + IH●I Alizarin Complexone Tartrate Malate Similar affinity for both K assoc (H●A) 5.5 x 10 4 M -1 4.8 x 10 4 M -1

29 29 Combined Sensing of Tartrate and Malate Concentrations of Tartrate and Malate in Beverages (mM)NMRUV/Vis Ernest & Julio Gallo Sauvignon Blanc35.632.9 Ste. Genevieve Chardonnay34.136.3 Henri Marchant Spumante26.524.9 Talus Merlot19.520.3 Santa Cruz organic white grape juice43.642.3 Welch's grape juice69.471.3 Wiskur, S.L. et al. Angew. Chem. Int. Ed. 2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed. 1999, 38, 3666 Tartrate (  ) Malate (○) Ascorbate (◊) Lactate (●) Glucose (■) Succinate (▲) 450 nm

30 30 Differential Sensing of Tartrate and Malate Wiskur, S.L. et al. Angew. Chem. Int. Ed. 2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed. 1999, 38, 3666 Tartrate Malate λ max = 445 nmλ max = 567 nm

31 31 Differential Sensing of Tartrate and Malate Wiskur, S.L. et al. Angew. Chem. Int. Ed. 2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed. 1999, 38, 3666 0.6 mM Tartrate 0.2 mM Malate 0.2 mM Tartrate 0.6 mM Malate Training Set Data

32 32 Outline Applications and Future Work Molecularly Imprinted Polymer Sensors Designing Synthetic Receptor Systems Evolved SensorsDesigned Sensors

33 33 Systematic Evolution of Ligands by Exponential Enrichment (SELEX) Schematic Reproduced From: http://surgery.duke.edu/wysiwyg/images/surgery_SELEX.jpg

34 34 Aptamer-Based Sensor for Cocaine Stojanovic, M.N.; Prada, P.; Landry, D.W. J. Am. Chem. Soc. 2001, 123, 4928 518 nm 472 nm K d ~ 100 μM Cocaine concentration in serum 10-4000 μM

35 35 Aptamer-Based Sensor for Cocaine Stojanovic, M.N.; Landry, D.W. J. Am. Chem. Soc. 2002, 124, 9678 K d < 5 μM

36 36 Aptamer-Based Sensor for Cocaine Stojanovic, M.N.; Landry, D.W. J. Am. Chem. Soc. 2002, 124, 9678 34 C 0 = blank control

37 37 Outline Applications and Future Work Molecularly Imprinted Polymer Sensors Designing Synthetic Receptor Systems Evolved SensorsDesigned Sensors

38 38 Molecularly Imprinted Polymer (MIP) Sensor Array Greene, N.T.; Shimizu, K.D. J. Am. Chem. Soc. 2005, 127, 5695

39 39 Molecularly Imprinted Polymer (MIP) Sensor Array Stephenson, C.J.; Shimizu, K.D. Polym. Int. 2007, 56, 482

40 40 Molecularly Imprinted Polymer (MIP) Sensor Array Greene, N.T.; Shimizu, K.D. J. Am. Chem. Soc. 2005, 127, 5695 PolymerTemplatePolymerTemplate P0noneP4 P1P5 P2P6 P3 Benzofurazan-based Amine Dye λ max 460 nm

41 41 Outline Applications and Future Work Molecularly Imprinted Polymer Sensors Designing Synthetic Receptor Systems Evolved SensorsDesigned Sensors

42 42 Applications and Future Electronic Tongue Medical Tests Food Science Chemical Warfare

43 43 Acknowledgements Professor Sandro Mecozzi Mecozzi Group Members  Peter Anderson  Jonathan Fast  Andrew Razgulin Practice Talk Attendees  Becca Splain  Maren Buck  Katherine Traynor  Matt Windsor  Claire Poppe  Alex Clemens  Richard Grant  Jessica Menke  Lauren Boyle  Margie Mattmann God, Family, and Friends


Download ppt "1 Indicator Displacement Assays for Solute Sensing Julee Byram Mecozzi Group May 10, 2007."

Similar presentations


Ads by Google