Presentation is loading. Please wait.

Presentation is loading. Please wait.

George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron.

Similar presentations


Presentation on theme: "George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron."— Presentation transcript:

1 George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron Institute, Texas A&M University, College Station, Texas, USA International Workshop on Nuclear Dynamics and Thermodynamics, in honor of Prof. Joe Natowitz TAMU, College Station, 19-22 Aug. 2013 Studies of N/Z equilibration via Heavy-Residue Isoscaling

2

3 BigSol Setup at TAMU: Sept. 2002 BigSol Setup at TAMU: Sept. 2002

4

5 BigSol Line results: Rare Isotope Production ( Sept.-Oct. 2003) Example of Z-A distribution of fragments from 64 Ni(25MeV/u)+ 64 Ni B  =1.473, I BigSol =79.3 A Angular acceptance: 1.5-3.0 deg. A Z Z A Neutron-Rich fragments from 64 Ni (25MeV/u) + 64 Ni (4.0mg/cm 2 ) B  =1.900 Tm, I BigSol =102.5 A i beam = 1 pnA, 4 hour run Angular acceptance: 1.5-3.0 deg. -1p+1n -2p+2n -4p Co Fe Mn Cr

6 Experimental work at Texas A&M: deep inelastic collisions below the Fermi energy: 86 Kr(25MeV/nucleon) + 64 Ni, 124 Sn PRL 91, 022701 (2003) PRC 84, 064607 (2011) 86 Kr(15MeV/nucleon) + 64 Ni, 124 Sn PRC 84, 064607 (2011) Findings: Peripheral collisions: enhanced production of n-rich nuclei : Heavy Residues as probes of nuclear dynamics and EOS: Heavy-residue isoscaling: Heavy-residue isoscaling: PRC 68, 024605 (2003) PRC 73, 024606 (2006) PRC 73, 024606 (2006) N/Z equilibration: PLB 588, 35 (2004) Present work: Heavy residue Isoscaling in 15 MeV/nucleon reactions Evolution of the N/Z w.r.t. to TKEL (~ degree of dissipation) Comparisons with the DIT and CoMD models. Overview of Heavy-Residue work :

7 Collisions between Heavy Ions at Fermi Energies (10<E/A < 40MeV) b: impact parameter θ: scattering angle Approaching phase: Target (Z t,A t ) θ b Projectile (Z p,A p ) Neutrons Protons Overlap (interaction) phase: exchange of nucleons: Deep Inelastic Transfer (DIT) Model L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991) excited projectile-like fragment (PLF) or quasi-projectile excited target-like fragment (TLF) or quasi-target Grazing angle, θ gr : nuclei in touching configuration

8 The Process of N/Z Transport * and Equilibration 112 Sn 50 62 124 Sn 50 74 86 Kr 36 50 86 Kr 36 50 N/Z = 1.40 N/Z = 1.48 N/Z = 1.40 N/Z = 1.24 Projectile Target Excited Projectile-like Fragment (PLF) or Quasi-projectile (N/Z) eq = 1.44 (N/Z) eq = 1.30 *or isospin diffusion Nucleon exchange: Deep Inelastic Transfer (DIT) Model L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991)

9 *M. Papa, A. Bonasera et al., Phys. Rev. C 64, 024612 (2001) Microscopic Calculations: Constrained Molecular Dynamics (CoMD)* CoMD : Quantum Molecular Dynamics model (Semiclassical)  Nucleons are considered as Gaussian wavepackets  N-N effective interaction ( Skyrme-type with K = 200 )  Several forms for N-N symmetry potential V sym (ρ)  Pauli principle imposed (via a phase-space ‘constraint’ algorithm )  Fragment recognition algorithm (R min = 3.0 fm) Neutrons Protons CoMD Evolution of 86 Kr Nucleus: t = 0-500 fm/c Δt = 10 fm/c z 86 Kr 36 50

10 CoMD Calculations: 86 Kr (15 MeV/nucleon) + 124 Sn CoMD: Constraint Molecular Dynamics; M. Papa, A. Bonasera, Phys. Rev. C 64, 024612 (2001) Neutrons Protons 86 Kr 36 50 124 Sn 50 74 Peripheral Collision b = 10 fm t = 0-300 fm/c Δt = 10 fm/c z z b = 8 fm t = 0-300 fm/c Δt = 10 fm/c 86 Kr 36 50 124 Sn 50 74 z Semi-Peripheral Collision z

11 Si Telescope E r ΔE PPAC1 Start T,X,Y Production Target D1D2 Wien Filter Q1 Q2 Q3 Q4 Q5 Dispersive Image Final Achromatic Image Rotatable Arm Reaction Angle: 0-12 o (selectable) PPAC2 Stop T, X,Y MARS Acceptances: Angular: 9 msr Momentum: 4 % Βρ = mυ/Q Separation Stage I Separation Stage II D3 MARS Recoil Separator and Setup for Heavy-Residue / RIB Studies* K500 Beam *G. A. Souliotis et al., Nucl. Instr. Methods B, 266, 4692 (2008) and references therein

12 Extracted physical quantities: Velocity, Energy loss, Total Energy Mass-to-charge ratio: A/Q B  ~ A/Q   Atomic Number Z Z ~  ΔE 1/2 Ionic charge Q Q ~ f(E, , B  ) Mass number A A = Q int  A/Q Reconstructed: Fragment Yield Distribution Y(Z, A, υ) Experimental Details Reactions studied with MARS: Δθ = 2.2-5.8 o 86 Kr 22+ (15 MeV/u, 5 pnA) + 64 Ni, 58 Ni (  gr ~ 6 o ) Δθ = 5.6-9.2 o 86 Kr + 124 Sn, 112 Sn (  gr ~ 9 o )

13 Experimental Mass Distributions: 86 Kr (15 MeV/u) + 64,58 Ni* Large cross sections of n- pickup products -6p - 3p -2p -1p -5p 34 Se 33 As 30 Zn 31 Ga 32 Ge 35 Br -4p 23 l 86 Kr + 64 Ni (15 MeV/u) l 86 Kr + 58 Ni (15 MeV/u) * G. A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

14 Comparison of calculations with data: 86 Kr (15 MeV/nucleon) + 64 Ni * P.N. Fountas, G.A. Souliotis et al., in preparation 86 Kr + 64 Ni (15 MeV/u)* DIT/SMM ------ DITm/SMM DIT : L. Tassan-Got, C. Stephan, Nucl. Phys. A 524, 121 (1991) DITm: M. Veselsky, G.A. Souliotis, Nucl. Phys. A 765, 252 (2006) SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, 044610 (2002); Nucl. Phys. A 507, 649 (1990) 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn *data: G.A. Souliotis et al., PRC 84, 064607 (2011)

15 Comparison: Data, Calculations: 86 Kr (15 MeV/nucleon) + 64 Ni *data: G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011) CoMD: Constrained Molecular Dynamics: M.Papa et. al., Phys. Rev. C 64, 024612 (2001) GEMINI: Binary Decay Code: R. Charity, Nucl. Phys. A 483, 391 (1988) SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, 044610 (2002); Nucl. Phys. A 507, 649 (1990) 86 Kr + 64 Ni (15 MeV/u)* CoMD/SMM ----- CoMD/GEMINI 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn * P.N. Fountas, G.A. Souliotis et al., in preparation

16 Scaling of Yield Ratios: 15MeV/nucleon data* R 21 (N,Z) = Y 2 /Y 1 R 21 = C exp ( α N ) 86 Kr+ 64 Ni, 58 Ni data at 4 o (  gr =6.0 o ) 86 Kr+ 124 Sn, 112 Sn data at 7 o (  gr =9.0 ο ) *G. A. Souliotis et al., in preparation

17 Isoscaling Parameter α : 15MeV/u data** ○ 86 Kr+ 64 Ni, 58 Ni ( 4 o data) R 21 = C exp ( α N ) ● 86 Kr+ 124 Sn, 112 Sn ( 7 o data) α = 4 C sym /T ( (Z/A) 1 2 – (Z/A) 2 2 ) Quasi-projectiles 1: n-poor 2:nrich M. B. Tsang et al. Phys. Rev. C 64, 054615 (2001) A.S. Botvina et al. Phys. Rev. C 65, 044610 (2002) P. Marini et al, Phys. Rev. C 85, 034617 (2012) * * **G. A. Souliotis et al., (in preparation)

18 Velocity, TKEL, E* vs Z 15MeV/u data** ○ 86 Kr+ 64 Ni, 58 Ni ( 4 o data) ● 86 Kr+ 124 Sn, 112 Sn ( 7 o data) Peripheral collision: t interaction short Semi-peripheral collisions: t interaction longer **G. A. Souliotis et al., (in preparation)

19 Residues: 86 Kr (15 MeV/u) + 64,58 Ni -------- DIT -------- CoMD (asy-stiff) -------- CoMD (asy-soft) 86 Kr+ 64 Ni 86 Kr+ 58 Ni MARS Isoscaling data* Δ(Z/A) 2 = (Z/A) 2 1 - (Z/A) 2 2 = α T / (4 C sym ) DIT: Deep Inelastic Transfer: L. Tassan-Got, Nucl. Phys. A 524, 121 (1991) CoMD: Constraint Molecular Dynamics * G.A. Souliotis et al. (in preparation) Fermi gas: T 2 = K 0 (  /  o ) 2/3  * K 0 : inv. lev. dens. param. at  o (K 0 = 12 ) Assume QP at normal density  =  o C sym =23 MeV

20 Residues: 86 Kr (15 MeV/u) + 124,112 Sn -------- DIT -------- CoMD (asy-stiff) -------- CoMD (asy-soft) 86 Kr+ 124 Sn 86 Kr+ 112 Sn MARS Isoscaling data* Δ(Z/A) 2 = (Z/A) 2 1 - (Z/A) 2 2 = α T / (4 C sym )

21 α,V,TKEL, E* vs Z 25MeV/u data** ● 86 Kr+ 124 Sn, 112 Sn ( 4 o data) Peripheral collision: t interaction short Semi-peripheral collisions: t interaction long **G. A. Souliotis et al., PLB 588, 35 (2004)

22 Residues: 86 Kr (25 MeV/u) + 124,112 Sn -------- DIT -------- CoMD (asy-stiff) -------- CoMD (asy-soft) 86 Kr+ 124 Sn 86 Kr+ 112 Sn MARS Isoscaling data: G.A.Souliotis et al. PRC 68, 024605 (2003) Δ(Z/A) 2 = (Z/A) 2 1 - (Z/A) 2 2 = α T / (4 C sym )

23 Interaction time vs TKEL : CoMD calculation ● 86 Kr+ 124 Sn, 112 Sn ( 25 MeV/u) ● 86 Kr+ 124 Sn, 112 Sn ( 15 MeV/u) ● 86 Kr+ 64 Ni, 58 Ni ( 15MeV/u) ● 40 Ar+ 64 Ni, 58 Ni ( 15MeV/u) TKEL/TKEL max = 1- exp(-t/τ) τ ~ 150 fm/c

24 FAUST/Q-Triplet Setup at TAMU* FAUST/Q-Triplet Setup at TAMU* * Paul Cammarata et al, ( SJYgroup )

25 ● Study of heavy-residue isoscaling from peripheral collisions. Information on N/Z transport and equilibration via the correlation: Δ vs TKEL ● Microscopic calculations of peripheral collisions with CoMD. No sensitivity to V sym (ρ) found in the Δ vs TKEL correlation * TAMU Cyclotron Upgrade, see : http://cyclotron.tamu.edu Summary and Conclusions Extension of experimental studies using neutron-rich RIBs from TAMU RIB Upgrade*, SPES at Legnaro, SPIRAL-II at GANIL and other facilities Plans for future work: ● Detailed comparisons with the theoretical codes ( DIT, CoMD,…. ) ● Experimental measurements of 15 MeV/nucleon reactions with the TAMU FAUST/Q-Triplet system (reconstruct QP).

26 Collaborators M. Veselsky, S. Galanopoulos, Z. Kohley, A. McIntosh, L.W. May, B.C. Stein, S.J. Yennello Special thanks to: A. Bonasera, TAMU and INFN, Catania, Italy, A. Botvina, FIAS, Frankfurt, Germany This work was supported in part by: The Robert A. Welch Foundation: Grant Number A-1266 and, The Department of Energy: Grant Number DE-FG03-93ER40773 Acknowledgements:

27 END of Talk : Additional material here:

28 Peripheral Collisions: 86 Kr + 124 Sn Calculations with a Thomas-Fermi code: V. Kolomietz, Phys. Rev. C 64, 024315 (2001) Peripheral Collisions: can provide information on the evolution of the N/Z degree of freedom and ( via microscopic calculations) the effective nucleon-nucleon interaction R =12 fm n p ρ overlap = ρ projectile + ρ target ρ overlap ~ 1/4 ρ o 124 Sn 50 74 86 Kr 36 50 Peripheral collision: t interaction short n p R =10 fm ρ overlap ~ 1.0-1.5 ρ o 124 Sn 50 74 86 Kr 36 50 Semi- peripheral collision: t interaction longer

29 Isoscaling: 40 Ar (15MeV/nucleon) + 64 Ni, 58 Ni 40 Ar + 64 Ni, 58 Ni (data inside  gr =6.2 ο ) R 21 = C exp ( α N ) α = 4 C sym /T ( (Z/A) 1 2 – (Z/A) 2 2 ) Quasi-projectiles 1: n-poor 2:nrich GS files in “ar07” : anal_mars_ar_jun07 z1_iso_arni_tex.fit z1_iso_arni_figure.tex => *.ps a_iso_arni_tex.fit a_iso_arni_figure.tex => *.ps

30 Velocity, E*, TKEL vs Z correlations: 15MeV/u data υ min => E*/A ~2.0 MeV ● 40 Ar+ 64 Ni, 58 Ni ( 4 o data) GS files in “ar07” : anal_mars_ar_jun07 vz_iso_arni_tex.fit vz_iso_arni_figure.tex => *.ps

31 Residues: 40 Ar (15 MeV/u) + 64,58 Ni -------- DIT -------- CoMD (linear) -------- CoMD (a-soft) -------- CoMD (a-stiff) -------- CoMD (Vsym = 0) 40 Ar+ 64 Ni 40 Ar+ 58 Ni C sym (ρ) MARS Isoscaling data* Δ(Z/A) 2 = (Z/A) 2 1 - (Z/A) 2 2 = a T / (4 C sym ) GS files in “ar07” : anal_mars_ar_jun07 azel1_arni_tex.fit azel1_arni_figure.tex => *.ps

32 TKEL correlations (I): All available MARS data О 86 Kr(15MeV/u)+ 64,58 Ni ( 4 o data) GS files in “kr07” : anal_mars_kr_jun07 azel_xxxx_tex.fit azel_xxxx_figure.tex => *.ps ● 86 Kr(15MeV/u)+ 124,112 Sn ( 7 o data) ▲ 40 Ar(15MeV/u)+ 64,58 Ni ( 4 o data)

33 TKEL correlations (II): All available MARS data О 86 Kr(15MeV/u)+ 64,58 Ni ( 4 o data) GS files in “kr07” : anal_mars_kr_jun07 azelv_xxxx_tex.fit azelv_xxxx_figure.tex => *.ps ● 86 Kr(15MeV/u)+ 124,112 Sn ( 7 o data) ▲ 40 Ar(15MeV/u)+ 64,58 Ni ( 4 o data) υ rel / υ rel,max

34  40 Ar + 64 Ni largest cross sections with the n-rich 64 Ni target Nuclide cross sections from: 40 Ar (15MeV/nucleon) + 64 Ni, 58 Ni, 27 Al  40 Ar + 58 Ni  40 Ar + 27 Al 38 S σ = 20 mb KAr Cl S P Si (+1p) (-1p) (-4p)(-3p) (-2p)

35 Mass Distributions: 86 Kr (15 MeV/u) + 64 Ni* Large cross sections of n- pickup products -4p - 3p -2p -1p -5p 34 Se 33 As 30 Zn 31 Ga 32 Ge 35 Br -4p 23 l 86 Kr + 64 Ni (15 MeV/u) l 86 Kr + 64 Ni (25 MeV/u)* ----- DIT/GEMINI ----- EPAX *G. A. Souliotis et al., Phys. Lett. B 543, 163 (2002)

36 The Superconducting Solenoid Rare Isotope Line at TAMU: Schematic diagram of the setup for heavy-residue studies from DIC:

37 Results of BigSol Line tests: Charge State Distributions Charge state distribution at PPAC1 (thru 2-inch hole) of 64 Ni (35MeV/u) after a mylar stripper. B  =2.020 Tm, I BigSol =109.0 A Angular acceptance: 2.0-6.0 deg. 28+27+ Y X Angular acceptance: 3.0-6.0 deg.

38 BigSol Line: 136 Xe DIC data Example of Z-E/A distribution of fragments from 136 Xe (20 MeV/u) data: ( ΔΕ-Ε-TOF techniques, use of large area Si and PPACs) : E/A (MeV/u) ZZ 136 Xe “elastic” B  =1.325 Tm, Angular acceptance: 1.5-3.0 deg. 136 Xe+ 124 Sn 136 Xe+ 232 Th 136 Xe “elastic” up to + 6 p

39 END of Talk ( ΙI ) Quad Triplet :

40 Ion Optics calculations with COSY-Infinity (M. Berz et al.) θ 0 = 30 mr φ 0 =30 mr Quadrupole Triplet: 1 st order optics Target PPAC1 t,X,Y Rays through QTS: 46 Ar 18+ (14.7 MeV/u) Bρ=1.400 Tm x-z plane y-z plane Beam Q1Q2Q3 PPAC2, ΔE,E

41 Ion Optics calculations with COSY-Infinity (M. Berz et al.) θ 0 = 30 mr φ 0 =30mr Quadrupole Triplet: 3 d order optics Target PPAC1 t,X,Y x-z plane y-z plane Beam Q1Q2Q3 Rays through QTS: 46 Ar 18+ (14.7 MeV/u) Bρ=1.400 Tm PPAC2, ΔE,E

42 Ion Optics calculations with COSY-Infinity (M. Berz et al.) θ 0 = 30 mr φ 0 =30mr Quadrupole Triplet: 3 d order optics Target x-z plane y-z plane Q1Q2Q3 Rays through QTS: 46 Ar 18+ (14.7 MeV/u) Bρ=1.400 Tm 0.0% Δp/p 2.5% Δp/p 5.0% Δp/p Beam PPAC1 t,X,Y PPAC2, ΔE,E


Download ppt "George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron."

Similar presentations


Ads by Google