Presentation is loading. Please wait.

Presentation is loading. Please wait.

Advances in Metal Mediated Intramolecular Enyne Carbocyclizations Patrick D. Pohlhaus The University of North Carolina at Chapel Hill March 28, 2003.

Similar presentations


Presentation on theme: "Advances in Metal Mediated Intramolecular Enyne Carbocyclizations Patrick D. Pohlhaus The University of North Carolina at Chapel Hill March 28, 2003."— Presentation transcript:

1 Advances in Metal Mediated Intramolecular Enyne Carbocyclizations Patrick D. Pohlhaus The University of North Carolina at Chapel Hill March 28, 2003

2 Presentation Features   The ability of Co, Ti, Zr, Pd, Ni, and Rh complexes to effect the cycloisomerization, cyclocarbonylation, alkylative cyclization, and reductive cyclization of 1,6 and 1,7 enynes   Advantages/Disadvantages of each metal   Substrate scope   Stereoselectivity issues, including asymmetric induction where applicable   Applications of methodology to synthetic problems Will Discuss:

3 Reaction Pathways Cycloisomerization Cyclocarbonylation   No net change in oxidation state   Complete “Atom Economy”   Selective geometry about alkene bearing R 1   Construction of cyclopentenones employing CO source   Pauson-Khand, Pauson-Khand type reaction

4 Reaction Pathways Reductive Cyclization Alkylative Cyclization   Incorporation of carbon containing fragment onto alkyne moiety   Selective geometry about exocyclic alkene bearing new group   Net addition of H 2 into cyclized product   Selective geometry about alkene bearing R 1

5 Cobalt (The Pauson-Khand Reaction)   Typically low yields are observed   A stoichiometric amount of Co 2 (CO) 8 is often employed   Intermolecular cyclization requires a strained olefin Original account (1973): Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc. Perkin Trans. 1 1973, 977-981.

6 PKR Applied to the Cyclocarbonylation of Enynes First Intramolecular account (1981):   Alkene strain requirement overcome by placing olefin and alkyne in close disposition   [3.3.0] and [4.3.0] systems containing functionality prepared from simple acyclic starting material Schore, N. E.; Croudace, M. C. J. Org. Chem. 1981, 46, 5436-5438.

7 Mechanistic and Stereochemical Considerations Magnus, P.; Principe, L. M.; Slater, M. J. J. Org. Chem. 1987, 52, 1483-1486.

8 Application of the Intramolecular Pauson-Khand Reaction to the Total Synthesis of (  -Quadrone (±)-Quadrone Magnus, P.; Principe, L. M.; Slater, M. J. J. Org. Chem. 1987, 52, 1483-1486.

9 Catalytic Intramolecular Pauson-Khand Reaction Jeong, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159-3160.

10 Zirconium Promoted Cyclocarbonylations and Reductive Cyclizations   Many groups (Z) are accommodated on the acetylene terminus   Reactions can typically be run at room temperature   Zirconacyclopentenes are stable and isolable   Reactions require a stoichiometric amount of Zr   Reactions fail with terminal acetylenes   Conditions are not very compatible with ester and other polar functionalities Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A. J. Am. Chem. Soc. 1985, 107, 2568-2569.

11 Substrate Scope Complete selectivity of olefin geometry in each reductive cyclization product Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc. 1989, 111, 3336-3346.

12 Diastereoselectivity and Further Substrate Scope in Zr(II) Mediated Reductive Cyclizations Pagenkopf, B. L.; Lund, E. C.; Livinghouse, T. Tetrahedron 1995, 51, 4421-4438

13 1,7-Enynes with Propargylic Substituent Pagenkopf, B. L.; Lund, E. C.; Livinghouse, T. Tetrahedron 1995, 51, 4421-4438

14 1,7-Enynes with an Allylic Substituent Pagenkopf, B. L.; Lund, E. C.; Livinghouse, T. Tetrahedron 1995, 51, 4421-4438

15 1,6-Enynes with an Allylic Substituent

16 Synthesis of the Azatricyclo[7.3.0.0 4,9 ]dodecene System Mori, M.; Uesaka, N.; Saitoh, F.; Shibasaki, M. J. Org. Chem. 1994, 59, 5643-5649.

17 Titanium Promoted Cyclocarbonylation/ Isocyanide Insertion Reaction Mechanism analogous to Zr mediated cyclocarbonylation Also noted reactivity with isocyanides Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 4912-4913. Both reactions require a stoichiometric amount of titanium

18 Catalytic Enyne Cyclization/Isocyanide Insertion Reaction (trialkylsilyl)cyanide- (trialkylsilyl)isocyanide equilibrium Isocyanide insertion rendered catalytic: Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8593-8601.

19 Catalytic Enyne Cyclization/Isocyanide Insertion Reaction Scope

20 Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8593-8601.

21 Direct Titanium Catalyzed Asymmetric Cyclocarbonylation FavoredDisfavored Ingate, S. T.; Marco-Contelles, J. Org. Prep. Proceed. Int. 1998, 30, 121-143. Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 7026-7033.

22 Substrate Scope Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 7026-7033. Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 11688-11689.

23 Substrate Scope Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 7026-7033.

24 Titanium Catalyzed Cycloisomerization   Yields 1,4-dienes selectively, unlike Pd chemistry   Enynes with a cis-olefin will not cycloisomerize Proposed catalytic cycle: Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976-1977.

25 Enyne Substrates Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976-1977.

26 Rhodium Catalyzed Cycloisomerizations   Highly selective for 1,4-diene formation   Reactions carried out near room temperature   cis + trans-olefins are cycloisomerized   Cycloisomerization success of a given substrate is very ligand dependant Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490-6491.

27 Substrate/Ligand Combinations Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490-6491.

28 Rhodium Catalyzed Asymmetric Cycloisomerization of 1,6-enynes Cao, P.; Zhang, X. Angew. Chem. Int. Ed. Engl. 2000, 39, 4104-4106.

29 Substrate/Ligand Combinations Cao, P.; Zhang, X. Angew. Chem. Int. Ed. Engl. 2000, 39, 4104-4106.

30 Rhodium Catalyzed Cyclocarbonylation   Atmospheric pressure of CO   Catalyst commercially available   Ability to cyclize enynes bearing terminal alkynes Koga, Y.; Kobayashi, T.; Narasaka, K. Chem. Lett. 1998, 249-250

31 Rhodium Catalyzed CO-Transfer Cyclocarbonylation   Aldehyde source of CO   No need for high pressure CO(g)   Rh catalyzes both a decarbonylation and cyclocarbonylation in one pot Proposed Partial Catalytic Cycle: Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806-3807.

32 CO-Transfer Scope Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806-3807.

33 Nickel Catalyzed Alkylative and Reductive Cyclizations of Alkynyl Enones   Complete stereocontrol of exocyclic olefin geometry in the construction of tri- or tetrasubstituted alkenes   Freedom in olefin geometry through order of substituent introduction   Alkene moiety in the enyne must be sufficiently electron poor Montgomery, J. Acc. Chem. Res. 2000, 33, 467-473.

34 Stereochemical Freedom in the Synthesis of Alkylidenecyclopentanes Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am. Chem. Soc. 1997, 119, 4911-4920. Chemist possesses complete stereochemical control through substituent ordering

35 Mechanistic Considerations Alkylative Cyclization Reductive Cyclization Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am. Chem. Soc. 1997, 119, 4911-4920.

36 Synthetic Transformations R1R1 R2R2 yield (%) HMe82 HBu51 + 11 reductive HPh61 HCH=CH 2 59 PhBu68 + 8 reductive BuPh38 R1R1 yield H92 Ph47 + 19 alkylative Bu58 + 16 alkylative Montgomery, J.; Savchenko, A. V. J. Am. Chem. Soc. 1996, 118, 2099-2100.

37 Synthetic Problems Strained Spirocycles Total Synthesis of (+)-  - allokainic acid Montgomery, J. Acc. Chem. Res. 2000, 33, 467-473.

38 Palladium Catalyzed Cycloisomerization of Enynes to 1,3- and 1,4-dienes   Ability to form products not accessible from the thermal ene reaction   Reactions compatible with a variety of functional groups   Terminal Alkynes are acceptable   Sensitive to reaction conditions Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781-1783.

39 Substrate Scope Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781-1783.

40 Reaction Medium Dependence Trost, B. M.; Pedregal, C. J. Am. Chem. Soc. 1992, 114, 7292-7294.

41 Mechanistic Possibilities (Cyclopalladation) Trost, B. M. Acc. Chem. Res. 1990, 23, 34-42.

42 Mechanistic Possibilities (Hydropalladation) Trost, B. M. Acc. Chem. Res. 1990, 23, 34-42.

43 Total Synthesis of 7-O-methyldehydropinguisenol Harada, K.; Tonoi, Y.; Kato, H.; Fukuyama, Y. Tetrahedron Lett. 2002, 43, 3829-3832. 7-O-methyldehydro- pinguisenol

44 Palladium Catalyzed Alkylative Cyclization of 1,6- and 1,7-Enynes Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc. 1992, 114, 9836-9845.

45 Alkylative Cyclization Scope Trost, B. M.; Pfrengle, W.; Urabe, H.; Dumas, J. J. Am. Chem. Soc. 1992, 114, 1923-1924.

46 Efficient Synthesis of Vitamin D 3 Metabolite Alphacalcidiol via Pd Catalyzed Alkylative Cyclization Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc. 1992, 114, 9836-9845. Alphacalcidiol

47 Summary   Various transition metal complexes effect the intramolecular carbocyclization of enynes   Complex molecules can be efficiently prepared from simple starting materials   Reactions offer complete stereoselectivity in exocyclic olefin formation: A formidable challenge   Cyclizations often exhibit excellent diastereoselectivity among ring substituents   Enyne transformations may be catalytic and/ or asymmetric

48 Acknowledgements Prof. Johnson Johnson Group UNC-CH


Download ppt "Advances in Metal Mediated Intramolecular Enyne Carbocyclizations Patrick D. Pohlhaus The University of North Carolina at Chapel Hill March 28, 2003."

Similar presentations


Ads by Google