Presentation is loading. Please wait.

Presentation is loading. Please wait.

MSE 227: Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in MSE You will learn about: material structure.

Similar presentations


Presentation on theme: "MSE 227: Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in MSE You will learn about: material structure."— Presentation transcript:

1 MSE 227: Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in MSE You will learn about: material structure how structure dictates properties how processing can change structure This course will help you to: use materials properly realize new design opportunities with materials

2 Time: T/Th 9:30 – 10:45 AM, 11:00-12:15 PM Room:JD3504 Instructor:Dr. Dale Conner Dept. of Manufacturing System Engineering and Management Office: JD3511, (818) 677-4730 Office Hour: T, Th: 12:30-1:30 PM 6:00 – 6:45 PM Email: rdconner@csun.edu

3 Prerequisites: CHEM 101, PHYS220A, PHYS220AL Corequisites: MATH 150B. Textbook: Fundamentals of Materials Science and Engineering, 3nd Ed. 2008. W.D. Callister, Jr. J. Wiley & Sons, NY Last day to drop without approval: Sept. 12, 2008 Course Description: An introductory course in engineering materials including metals, ceramics, polymers, and composites. Study of atomic and crystalline structures of materials. Application of basic principles to the study of mechanical, physical, and chemical behavior of materials. Selection of materials in engineering applications based on materials properties and processing. Design project on materials properties, selection or application. The learning objectives are: To understand the principles of engineering and science in applications of materials and design. To learn to find information in literature and other available sources. To learn to use information systems (computer, internet, and other available sources) in engineering practice.

4 Grading Policy Quizzes15.0 % Mid-term Exam40 % Term papers15 % Final Exam30% Methods of Students evaluation: Two class examinations and a final examination. Weekly quizzes and worksheets A written report on a material of interest: Outline due: November 13, 2008, with a list of at least six references. Project due: December 9, 2008.

5 The Materials Science Mantra: The properties of a material depend upon its composition and microstructure The microstructure of a material depends upon its composition and the processing that it undergoes

6 Materials are... engineered structures...not blackboxes! Structure...has many dimensions... Structural featureDimension (m) atomic bonding missing/extra atoms crystals (ordered atoms) second phase particles crystal texturing < 10 -10 10 -10 10 -8 -10 10 -8 -10 -4 > 10 -6 1 Chapter 1

7 ex: hardness vs structure of steel Properties depend on structure Data obtained from Figs. 10.21(a) and 10.23 with 4wt%C composition, and from Fig. 11.13 and associated discussion, Callister 6e. Micrographs adapted from (a) Fig. 10.10; (b) Fig. 9.27;(c) Fig. 10.24; and (d) Fig. 10.12, Callister 6e. ex: structure vs cooling rate of steel Processing can change structure 2 Structure, Processing, & Properties Hardness (BHN)

8 1. Pick ApplicationDetermine required Properties 2. Properties Identify candidate Material(s) 3. Material Identify required Processing Processing: changes structure and overall shape ex: casting, sintering, vapor deposition, doping forming, joining, annealing. Properties: mechanical, electrical, thermal, magnetic, optical, deteriorative. Material: structure, composition. 3 The Materials Selection Process

9 Electrical Resistivity of Copper: Adding “impurity” atoms to Cu increases resistivity. Deforming Cu increases resistivity. 4 Adapted from Fig. 18.8, Callister 6e. (Fig. 18.8 adapted from: J.O. Linde, Ann Physik 5, 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd edition, McGraw-Hill Company, New York, 1970.) ELECTRICAL

10 Space Shuttle Tiles: --Silica fiber insulation offers low heat conduction. Thermal Conductivity of Copper: --It decreases when you add zinc! 5 Fig. 19.0, Callister 6e. (Courtesy of Lockheed Missiles and Space Company, Inc.) Adapted from Fig. 19.4W, Callister 6e. (Courtesy of Lockheed Aerospace Ceramics Systems, Sunnyvale, CA) (Note: "W" denotes fig. is on CD-ROM.) Adapted from Fig. 19.4, Callister 6e. (Fig. 19.4 is adapted from Metals Handbook: Properties and Selection: Nonferrous alloys and Pure Metals, Vol. 2, 9th ed., H. Baker, (Managing Editor), American Society for Metals, 1979, p. 315.) THERMAL

11 Magnetic Permeability vs. Composition: --Adding 3 atomic % Si makes Fe a better recording medium! 6 Magnetic Storage: --Recording medium is magnetized by recording head. MAGNETIC

12 Transmittance: --Aluminum oxide may be transparent, translucent, or opaque depending on the material structure. 7 single crystal polycrystal: low porosity polycrystal: high porosity OPTICAL

13 Stress & Saltwater... --causes cracks! Heat treatment: slows crack speed in salt water! 4m4m --material: 7150-T651 Al "alloy" (Zn,Cu,Mg,Zr) 8 DETERIORATIVE

14 Use the right material for the job. Understand the relation between properties, structure, and processing. Recognize new design opportunities offered by materials selection. Course Goals: 9 SUMMARY


Download ppt "MSE 227: Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in MSE You will learn about: material structure."

Similar presentations


Ads by Google