Presentation is loading. Please wait.

Presentation is loading. Please wait.

L. Fiscarelli, S. Izquierdo Bermudez, O. Dunkel, S. Russenschuck, G. Willering, J. Feuvrier 22 nd September 2015.

Similar presentations


Presentation on theme: "L. Fiscarelli, S. Izquierdo Bermudez, O. Dunkel, S. Russenschuck, G. Willering, J. Feuvrier 22 nd September 2015."— Presentation transcript:

1 L. Fiscarelli, S. Izquierdo Bermudez, O. Dunkel, S. Russenschuck, G. Willering, J. Feuvrier 22 nd September 2015

2 Click here to add footer 2 Outline MM systems ambient temperature tests cryogenic temperature tests MM test strategy Tested magnets Results TF Multipoles Comparison with ROXIE model Cold/Warm correlation Inverse analysis Ramp-rate dependency Conclusions

3 Click here to add footer 3 Measurement system 300 K  Motor + encoder + slip-ring unit (MRU)  Fast Digital Integrator (FDI)  FuG low voltage power supply (40 V, 20 A)  DCCT Hitec MACC-plus  Search coil shafts (radius 22 mm, length 1.2 m)  Flexible software Framework for Magnetic Measurements (FFMM) A measurement is an average over 1.2 m Number of turns(-)256 Inner width(mm)13.41 Inner length(mm)1195.6 Groove thickness(mm)1.4 Magnetic surface(m2)3.37 Center radius(mm)21.33

4 Click here to add footer 4 Measurement system 1.9 K  Flexible software Framework for Magnetic Measurements (FFMM)  Fast Digital Integrators (FDI)  Motor + encoder + slip-ring unit (MRU)  Vertical rotating shaft in liquid He Number of turns(-)150 Inner width(mm)6.43 Inner length(mm)250.00 Groove thickness(mm)0.80 Magnetic surface(m 2 )0.28197 Center radius(mm)18.91 pos. 1 pos. 2 pos. 3 pos. 4 pos. 5 A measurement is an average over 250 mm

5 Click here to add footer 5 Measurement system 1.9 K  Flexible software Framework for Magnetic Measurements (FFMM)  Fast Digital Integrators (FDI)  Motor + encoder + slip-ring unit (MRU)  Vertical rotating shaft in liquid He A measurement is an average over 250 mm Number of turns-36 Inner widthmm10.3 Inner lengthmm431.5246.5 Groove thicknessmm0.57 Magnetic surfacem2m2 0.170.10 Center radiusmm21.5

6 Click here to add footer 6 MM test strategy 1) At ambient temperature - Collared coil (CC) at ±20 A - Cold mass (CM) at ±20 A 2) At cryogenic temperature - CM with the following powering cycles - Stair-step cycle preceded by a quench - Machine cycle preceded by a quench - Ramp-rate study - Additional tests - Variable minimum current at 1.9 K and 4.5 K on MBHSP101 - Long plateau (10 h) at nominal on MBHSP102 3) At ambient temperature - CM at ±20 A

7 Click here to add footer 7 Tested magnets 2-m models with single aperture - MBHSP101 -CC and CM at 300 K -CM at 1.9 K -CM at 300 K - MBHSP102 -CC and CM at 300 K -CM at 1.9 K -CM at 300 K - MBHSP103 -CC and CM at 300 K

8 Click here to add footer 8 Transfer function  Measurements and 2-D ROXIE model in agreement for geometric TF -30 units on MBHSP101 probably due to shaft calibration Perfect agreement on MBSP102  Saturation overestimated by the model +55 units measured on both magnet models

9 Click here to add footer 9 Transfer function Possible sources of error: Iron properties Using data from LHC production the discrepancy decrease by 20 units (from ~70 to ~50 units) Packing factor of the yoke laminations Its effect is up to ~15 units Geometric Rather big displacements needed to explain 50 units (350 µm smaller coil gives ~15 units)

10 Click here to add footer 10 The main source of error is the magnetic properties of the iron: Discrepancy ~ 80 units using ROXIE bhdata2 Discrepancy ~ 55 units using LHC production data Discrepancy ~ 15 units using a modified bh data based on [1] Modification on the BH data based on Wlodarski empirical relation. Nom. Correspond to the parameters reported in S. Russenschuck book [1] Z. Wlodarki. Analytical description of magnetization curves Critical region! Transfer function

11 Click here to add footer 11 Allowed multipoles Reference radius 17 mm MBHSP101 MBHSP102

12 Click here to add footer 12 Geometric multipoles MBHSP101 Reference radius 17 mm pos 1pos 2pos 3 tolerances TF (T kA -1 )0.99300.99340.9922 6.23 units - nbnanbnanbnan σ bnσ an σ bnσ an 20.865.47-0.595.11-2.144.66 1.500.41 1.701.82 36.35-1.215.25-0.784.60-1.75 0.880.49 1.081.18 40.301.72-0.510.99-0.19-0.26 0.411.00 0.620.67 51.490.011.430.430.720.48 0.430.26 0.350.39 60.010.49-0.150.700.040.49 0.100.12 0.170.20 7-0.06-0.19-0.22-0.070.130.11 0.180.15 0.10 8-0.010.10-0.020.010.03-0.01 0.030.06 0.05 90.89-0.200.85-0.320.80-0.33 0.040.07 0.030.02 100.00 -0.010.00-0.020.01 0.00 0.01 110.37-0.060.37-0.120.39-0.14 0.010.05 0.01 random block displacements of 60  m

13 Click here to add footer 13 Cold/warm correlation MBHSP101 half magnet Reference radius 17 mm half magnet Temp. 300 K before cold tests 1.9 K 300 K after cold tests TF0.735 0.747 0.736 nbnan bnan bnan 22.384.57 -0.683.89 -2.072.28 310.56-2.12 8.77-2.63 6.80-2.08 40.33-2.78 -0.120.70 -0.440.43 5-0.960.22 1.280.43 0.150.22 6-0.030.33 -0.050.46 0.070.18 70.30-0.12 0.10-0.01 0.09-0.12 80.05-0.08 -0.020.02 -0.01 90.55-0.02 0.72-0.30 0.57-0.03 100.00 -0.010.01 -0.02 110.230.02 0.33-0.09 0.240.02

14 Click here to add footer 14 Reference radius 17 mm Changes on multipoles before/after test at cold Better cold/warm correlation with measurements at warm after cold tests Cold/warm correlation MBHSP101 half magnet

15 Click here to add footer 15 Geometric multipoles MBHSP102 central field Reference radius 17 mm 300 K before tests at 1.9 K 1.9 K at 5 kA on three central segments 300 K after tests at 1.9 K 1.2 m 0.250 m 1.2 m nbnan bnanbnanbnan bnan 20.336.76 1.752.731.223.560.693.67 0.217.51 39.50-0.84 11.32-1.7811.82-1.3810.750.25 10.05-1.12 40.241.28 0.540.190.32-0.33-0.29-0.20 0.231.50 51.56-0.02 1.17-0.591.390.201.650.58 1.420.01 60.000.03 -0.010.130.19-0.420.09-0.24 0.010.05 70.16-0.02 0.16-0.220.10-0.070.12-0.06 0.18-0.01 80.080.03 -0.040.05-0.090.030.05 0.03 90.830.00 0.63-0.130.640.020.620.22 0.83-0.02 100.00 0.01 110.400.02 0.22-0.040.190.050.170.16 0.400.02 12-0.060.01 -0.030.06-0.060.04-0.070.02 -0.010.01 13-0.100.00 -0.11-0.01-0.110.00-0.110.00 -0.090.00 140.00 0.01 0.00 15-0.020.00 -0.020.00-0.020.00-0.02-0.01 -0.020.00

16 Click here to add footer 16 Reference radius 17 mm 300 K before tests at 1.9 K 1.9 K 300 K after tests at 1.9 K nbnan bnan bnan 20.413.23 0.512.33 0.834.15 314.20-1.81 14.54-1.02 14.26-1.80 40.390.75 0.030.69 0.341.11 53.130.50 1.690.33 3.360.39 6-0.06-0.03 0.06-0.07 -0.090.06 70.070.06 0.220.06 0.020.10 80.070.00 0.020.00 0.07-0.02 90.700.00 0.630.05 0.71-0.02 10-0.01 0.00 0.01 110.350.05 0.220.07 0.340.05 12-0.060.00 -0.020.01 -0.020.00 13-0.090.00 -0.110.00 -0.090.00 140.000.01 0.00 0.01 15-0.020.00 -0.020.00 -0.020.00 Geometric multipoles MBHSP102 integral field

17 Click here to add footer 17 Reference radius 17 mm Cold/warm correlation MBHSP102 Central field Integral field No changes on multipoles before/after test at 1.9 K

18 Click here to add footer 18 Inverse Analysis ANSYS displacements Apply displacement in ROXIE strands Study impact of the displacements on field quality in ROXIE Shift on b 3 of 6.5 units between the first and second model. The main difference among them is the mid-plane shim: MBHSP101 : 250 µm excess (0.125 µm per coil) MBHSP102 : nominal ROXIE-ANSYS interface to evaluate the impact of the actual coil geometry on the harmonics.

19 Click here to add footer 19 MBHSP101  reasonable for b3  Still a discrepancy on b5

20 Click here to add footer 20  reasonable for b3  Still a discrepancy on b5 MBHSP102

21 Click here to add footer 21 MBHSP102 non-allowed 300 K at 20 A 1.9 K at 5 kA Manufacturing tolerance Collared coilCold massseg3seg4seg5 nbnanbnanbnanbnanbnanbnan 20.008.720.336.761.752.731.223.560.693.671.932.87 31.71-0.939.50-0.8411.32-1.7811.82-1.3810.750.251.241.66 40.211.660.241.280.540.190.32-0.33-0.29-0.20.61 52.24-0.011.56-0.021.17-0.591.390.21.650.580.310.64 Right/left symmetric Top/bottom anti-symmetric a2, a4 Radial coils diff Right/left anti-symmetric Top/bottom anti-symmetric a1, a3 Pole shimming For the non-allowed, only a 2 is not within the boundaries set by the manufacturing tolerances. It can be easily explained by the differences in coil outer radial insulation

22 Click here to add footer 22 MBHSP102 Coil Geometry Pole shimmingSS-316Kapton Nominal0.1253x0.125 106 right0.13x0.125 106 left0.153x0.125 108 right0.153x0.125 108 left0.13x0.125 Radial InsulationS2-WrapKapton Nominal0.20.5 106 inner0.00.5 106 outer0.00.5 108 inner0.10.5 108 outer0.10.5 Coil 108 Coil 106 25µm R L L R Average mid plane shift = 50 µm Average pole rotation = 25 µm

23 Click here to add footer 23 MBHSP102 a2, a4 CC R22ROXIE 0.7950.798 nbnanbnan 20.008.720.00 31.71-0.93-0.400.00 40.211.660.00 52.24-0.010.490.00 A radial shift of 50 µm explain a2 and a4, which is reasonable considering that coil 106 has 100 µm less of radial insulation

24 Click here to add footer 24 MBHSP102 a3, a5 To explain a3/a5 we need anti- symmetry in both axis 20 µm of rotation on the mid-plane is enough to justify a 3, But from mechanical measurements it seems that the mid-plane is shifted (i.e. a 2 a 4 ) and not rotated. 70 µm of rotation in the mid-plane explains the measured a2 and a4 (which can be also explain with the differences in coil radial shimming). CC R22ROXIE 0.7950.798 nbnanbnan 20.008.720.00 31.71-0.93-0.400.00 40.211.660.00 52.24-0.010.490.00 150 µm

25 Click here to add footer 25 Ramp-rate dependence Reference radius 17 mm MBHSP101 A s -1 010204080010204080  b n at 5 kA (units)  a n at 5 kA (units) 20.000.100.05-0.03-0.200.00-0.05-0.11-0.12-0.13 30.000.030.050.060.160.000.02-0.04-0.15-0.30 40.000.020.050.090.210.000.010.020.040.10 50.00-0.04-0.05-0.10-0.170.00 -0.01 60.00 0.050.100.000.010.02 0.01 70.000.020.000.010.00 -0.03-0.01-0.03-0.01 80.000.03 0.040.050.000.010.000.020.01 90.00 0.01 0.00 0.01 0.04 MBHSP102 A s -1 0 20501000 2050100  b n at 5 kA (units)  a n at 5 kA (units) 20.00 -0.02-0.14-0.120.00 -0.26-0.62-0.84 30.00 0.160.320.540.00 -0.040.040.12 40.00 0.020.040.080.00 -0.16-0.28-0.38 50.00 -0.14-0.080.020.00 -0.06-0.02 60.00 0.020.060.00 0.02-0.02-0.06 70.00 0.02 0.040.00 8 0.020.080.00 -0.020.00 9 0.020.00-0.020.00 0.02 Small effects on both magnets

26 Click here to add footer 26 Noise at low current MBHSP101 At 1.9 K  Noise up to 600 A  Visible on TF and multipoles At 4.5 K  No noise at low current  Noise of smaller amplitude at higher current Reference radius 17 mm

27 Click here to add footer 27 Noise at low current MBHSP102 At 1.9 K  Noise up to 500 A  Visible on TF and multipoles No tests at 4.5 K Reference radius 17 mm

28 Click here to add footer 28 Persistent currents Reference radius 17 mm Differences on measured b3 magnetization cycle

29 Click here to add footer 29 Other measurements Reference radius 17 mm MBHSP101 MBHSP102 Settling of b3 after 3 cycles Decay at injection of 1.2 units observed on SP101 Decay of 0.4 units on b3 during a 10-h long plateau at nominal current

30 Click here to add footer 30 MBHSP103 Reference radius 17 mm Results of measurements at 300 K on MBHSP103 are very similar to those on MBHSP102

31 Click here to add footer 31 Conclusions 3 short models tested (2 warm and cold, and 1 warm) Transfer function Geometric in agreement with the model Saturation overestimated by the model Multipoles Geometric in general agreement with the model Discrepancies on persistent current effects Ramp-rate dependency Relatively small effects Cold/Warm correlation Change before/after cold tests on MBHSP101 Better correlation on MBHSP102


Download ppt "L. Fiscarelli, S. Izquierdo Bermudez, O. Dunkel, S. Russenschuck, G. Willering, J. Feuvrier 22 nd September 2015."

Similar presentations


Ads by Google