Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ch. 5 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of.

Similar presentations


Presentation on theme: "Ch. 5 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of."— Presentation transcript:

1 Ch. 5 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of a measurement is an _____________ describing the object.)‏ *Examples: ___________, ___________, long, __________... Quantitative measurements give results in numeric form. (The results of a measurement contain a _____________.)‏ *Examples: 4’6”, __________, 22 meters, __________... Accuracy vs. Precision Accuracy is how close a ___________ measurement is to the ________ __________ of whatever is being measured. Precision is how close ___________ measurements are to _________ ___________. adjective shortheavycold number 600 lbs.5 ºC single valuetrue several othereach

2 Practice Problem: Describe the shots for the targets. Bad Accuracy & Bad PrecisionGood Accuracy & Bad Precision Bad Accuracy & Good PrecisionGood Accuracy & Good Precision

3 Significant Figures Significant figures are used to determine the ______________ of a measurement. (It is a way of indicating how __________ a measurement is.)‏ *Example: A scale may read a person’s weight as 135 lbs. Another scale may read the person’s weight as 135.13 lbs. The ___________ scale is more precise. It also has ______ significant figures in the measurement. Whenever you are measuring a value, (such as the length of an object with a ruler), it must be recorded with the correct number of sig. figs. Record ______ the numbers of the measurement known for sure. Record one last digit for the measurement that is estimated. (This means that you will be ________________________________ __________ of the device and taking a __________ at what the next number is.)‏ more marks reading in between the guess precise ALL second precision

4 Significant Figures Practice Problems: What is the length recorded to the correct number of significant figures? (cm) 10 20 30 40 50 60 70 80 90 100 length = ________cm 11.65 58

5 Rules for Counting Significant Figures in a Measurement When you are given a measurement, you will need to be aware of how many sig. figs. the value contains. (You’ll see why later on in this chapter.)‏ Here is how you count the number of sig. figs. in a given measurement: #1 (Non-Zero Rule): All digits 1-9 are significant. *Examples: 2.35 g =_____S.F. 2200 g = _____ S.F. #2 (Straddle Rule): Zeros between two sig. figs. are significant. *Examples: 205 m =_____S.F.80.04 m =_____S.F. 7070700 cm =_____S.F. #3 (Righty-Righty Rule): Zeros to the right of a decimal point AND anywhere to the right of a sig. fig. are significant. *Examples: 2.30 sec. =_____S.F. 20.0 sec. =_____S.F. 0.003060 km =_____S.F. 32 34 5 33 4

6 Rules for Counting Significant Figures in a Measurement #4 (Bar Rule): Any zeros that have a bar placed over them are sig. (This will only be used for zeros that are not already significant because of Rules 2 & 3.)‏ *Examples: 3,000,000 m/s =_____S.F. 20 lbs =____S.F. #5 (Counting Rule): Any time the measurement is determined by simply counting the number of objects, the value has an infinite number of sig. figs. (This also includes any conversion factor involving counting.) *Examples: 15 students =_____S.F. 29 pencils = ____S.F. 7 days/week =____S.F. 60 sec/min =____S.F. 42 ∞ ∞ ∞ ∞

7 Calculations Using Sig. Figs. When adding or subtracting measurements, all answers are to be rounded off to the least # of ___________ __________ found in the original measurements. When multiplying or dividing measurements, all answers are to be rounded off to the least # of _________ _________ found in the original measurements. Practice Problems: 2.83 cm + 4.009 cm − 2.1 cm = 4.739 cm ≈_____ cm 36.4 m x 2.7 m = 98.28 m 2 ≈ _____ m 2 0.52 g ÷ 0.00888 mL = 5.855855 g/mL ≈ ____ g/mL + ≈ 157.17 (only keep 2 decimal places)‏ Example: decimal places significant figures 4.7 98 5.9 (only keep 1 decimal place)‏ (only keep 2 sig. figs)‏

8 So What Does This All Mean? When you measure and you then use a calculator you need to think about how many decimal places in your answer. When you use your calculator and multiply or divide give me three to five significant figures (or numbers). Don’t give me tons of decimal places. Practice Problems: 2.83 cm + 4.009 cm − 2.1 cm = 4.739 cm ≈_____ cm 36.4 m x 2.7 m = 98.28 m 2 ≈ _____ m 2 0.52 g ÷ 0.00888 mL = 5.855855 g/mL ≈ ____ g/mL 4.7 98 5.9 (least amount of decimal places)‏ (least amount of sig figs)‏

9 For Example Lets say you are finding the average mass of beans. You would count how many beans you had and then find the mass of the beans. 26 beans have a mass of 44.56 grams. 44.56 grams ÷26 =1.713846154 grams So then what should your written answer be? How many decimal points did you have in your measurement? Rounded answer = 2 1.71 grams

10 The SI System (The Metric System)‏ Here is a list of common units of measure used in science: Standard Metric Unit Quantity Measured kilogram, (gram) ______________ meter ______________ cubic meter, (liter) ______________ seconds ______________ Kelvin, (˚Celsius) _____________ The following are common approximations used to convert from our English system of units to the metric system: 1 m ≈ _________ 1 kg ≈ _______ 1 L ≈ 1.06 quarts 1.609 km ≈ 1 mile 1 gram ≈ ______________________ 1mL ≈ _____________ volume 1mm ≈ thickness of a _______ mass length volume time temperature 1 yard sugar cube’s 2.2 lbs. mass of a small paper clip dime

11 The SI System (The Metric System)‏

12

13 Metric Conversions The metric system prefixes are based on factors of _______. Here is a list of the common prefixes used in chemistry: kilo- hecto- deka- deci- centi- milli- The box in the middle represents the standard unit of measure such as grams, liters, or meters. Moving from one prefix to another involves a factor of 10. *Example: 1000 millimeters = 100 ____ = 10 _____ = 1 _____ The prefixes are abbreviated as follows: k h da d c m *Examples of measurements: 5 km 2 dL 27 dag 3 m 45 mm grams Liters meters mass cm dmm g, L, m

14 Metric Conversions To convert from one prefix to another, simply count how many places you move on the scale above, and that is the same # of places the decimal point will move in the same direction. Practice Problems: 380 km = ______________m 1.45 mm = ______________m 461 mL = ____________dL 0.4 cg = ______________ dag 0.26 g =_____________ mg 230,000 m = _______km Other Metric Equivalents 1 mL = 1 cm 3 1 L = 1 dm 3 For water only: 1 L = 1 dm 3 = 1 kg of water or 1 mL = 1 cm 3 = 1 g of water Practice Problems: (1) How many liters of water are there in 300 cm 3 ? ___________ (2) How many kg of water are there in 500 dL? _____________ 380,000 4.61 260 0.00145 0.0004 230 0.3 L 50 kg

15 Metric Volume: Cubic Meter (m 3 )‏ 10 cm x 10 cm x 10 cm = Liter

16 grams Liters meters Area and Volume Conversions If you see an exponent in the unit, that means when converting you will move the decimal point that many times more on the metric conversion scale. *Examples: cm 2 to m 2......move ___________ as many places m 3 to km 3......move _____ times as many places Practice Problems: 380 km 2 = _________________m 2 4.61 mm 3 = _______________cm 3 k h da g, L, m d c m twice 3 380,000,000 0.00461

17 Scientific Notation Scientific notation is a way of representing really large or small numbers using powers of 10. *Examples: 5,203,000,000,000 miles = 5.203 x 10 12 miles 0.000 000 042 mm = 4.2 x 10 −8 mm Steps for Writing Numbers in Scientific Notation (1) Write down all the sig. figs. (2) Put the decimal point between the first and second digit. (3) Write “x 10” (4) Count how many places the decimal point has moved from its original location. This will be the exponent...either + or −. (5) If the original # was greater than 1, the exponent is (__), and if the original # was less than 1, the exponent is (__)....(In other words, large numbers have (__) exponents, and small numbers have (_) exponents. + + − −

18 477,000,000 miles = _______________miles 0.000 910 m = _________________ m 6.30 x 10 9 miles = ___________________ miles 3.88 x 10 −6 kg = __________________ kg Scientific Notation Practice Problems: Write the following measurements in scientific notation or back to their expanded form. 4.77 x 10 8 9.10 x 10 −4 6,300,000,000 0.00000388 −

19

20

21

22

23

24 Mass vs. Weight Mass depends on the amount of ___________ in the object. Weight depends on the force of ____________ acting on the object. ______________ may change as you move from one location to another; ____________ will not. You have the same ____________ on the moon as on the earth, but you ___________ less since there is less _________ on the moon. matter gravity Weight mass gravity weigh Mass = 80 kg Weight = 176 lbs. Mass = 80 kg Weight = 29 lbs.

25 Density Density is a ___________ of an object’s mass and its volume. Density does not depend on the _________ of the sample you have. The density of an object will determine if it will float or sink in another phase. If an object floats, it is _______ dense than the other substance. If it sinks, it is ________ dense. The density of water is 1.0 g/mL, and air has a density of 0.00129 g/mL (or 1.29 g/L). Density = Mass/Volume m D V X Mass = D x V ratio size less more Density = m/V Volume = m/D

26 Density Practice Problems: The density of gold is 19.3 g/cm 3. How much would the mass of a bar of gold be? Assume a bar of gold has the following dimensions: L= 27 cm W= 9.0 cm H= 5.5 cm (2) Which picture shows the block’s position when placed in salt water? (3) Will the following object float in water? _______ Object’s mass = 27 g Object’s volume= 25 mL Volume = L x W x H Volume = 27 x 9.0 x 5.5 = 1336.5 cm 3 mass = D x V mass = 19.3 g/cm 3 x 1336.5 cm 3 = 25,794.45 g mass ≈ 26,000 g = 26 kg ≈ 57 lbs. No! It will sink. (D > 1)‏

27 Measuring Temperature Temperature is the ____________ or ____________ of an object. The Celsius temperature scale is based on the freezing point and boiling point of __________. F.P.= 0˚CB.P.= 100˚C The Kelvin temperature scale, (sometimes called the “absolute temp. scale” is based on the ____________ temperature possible, absolute zero. (All molecular motion would __________.)‏ Absolute Zero = 0˚ Kelvin = −273˚ C To convert from one temp. scale to another: ˚C = Kelvin − 273 K= Celsius + 273 Practice Problems: Convert the following 25˚C = _______ K 473 K = _______˚C hotnesscoldness water lowest stop 298 200

28 Temperature Scales Liquid Nitrogen

29 Evaluating the Accuracy of a Measurement The “Percent Error ” of a measurement is a way of representing the accuracy of the value. (Remember what accuracy tells us?)‏ % Error = (Accepted Value) − (Experimentally Measured Value) x 100 (Accepted Value)‏ Practice Problem: A student measures the density of a block of aluminum to be approximately 2.96 g/mL. The value found in our textbook tells us that the density was supposed to be 2.70 g/mL. What is the accuracy of the student’s measurement? (Absolute Value)‏ % Error = |2.70−2.96| ÷ 2.70 =0.096296…x 100 =9.63% error


Download ppt "Ch. 5 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of."

Similar presentations


Ads by Google