Download presentation
Presentation is loading. Please wait.
Published byAvis McKinney Modified over 9 years ago
1
Biology Science Department Deerfield High School Energy Transformations in Living Organisms: Cellular Respiration
2
Biology Science Department Deerfield High School Review: Producers Producers get their energy from the sun. Producers convert this light energy into stored chemical energy (glucose). This process is called photosynthesis.
3
Biology Science Department Deerfield High School Review: Consumers Consumers get their energy from the producers. Consumers convert stored chemical energy (glucose) into usable chemical energy (ATP). This process is called cellular respiration.
4
Biology Science Department Deerfield High School Cellular Respiration (aerobic) Cellular respiration is the process by which glucose (C 6 H 12 O 6 ) is broken down to release energy for making ATP, another form of chemical energy.
5
Biology Science Department Deerfield High School Aerobic Respiration – Equation C 6 H 12 O 6 + 6 O 2 6 H 2 O + 6 CO 2 + 36 ATP food (glucose, a carbohydrate) oxygenwater carbondioxide
6
Biology Science Department Deerfield High School BioTheme: Interdependence! Photosynthesis: 6 H 2 O + 6 CO 2 + energy (sun) → C 6 H 12 O 6 + 6 O 2 Aerobic Cellular Respiration: ) C 6 H 12 O 6 + 6 O 2 → 6 H 2 O + 6 CO 2 + energy (ATP)
7
Biology Science Department Deerfield High School Why ATP? An analogy to money… Glucose in our food is a great source of energy! ($100 bill) However, individual cell processes may only require a small amount of energy ($1 bill) Analogy: most vending machines do not accept $100 bills! We need a smaller form of “currency” for these processes. ATP (adenosine triphosphate) is this important cellular “currency” for life. ATP releases more appropriate amounts of energy for the individual cellular processes that require energy. (We will study this molecule in detail in our next activity!)
8
Biology Science Department Deerfield High School The BIG Question is… Do only animals respire? Or do plants respire too? Only plants perform photosynthesis Plants AND animals perform cellular respiration! (Can you explain why??)
9
Biology Science Department Deerfield High School Site of Cellular Respiration Plant and animal cells contain mitochondria: cell structures that transform chemical energy from glucose to ATP.
10
Biology Science Department Deerfield High School Significant ATP Production Aerobic cellular respiration releases energy SLOWLY, using oxygen to convert ONE molecule of glucose to 36 ATP !
11
Biology Science Department Deerfield High School Cellular Respiration (anaerobic) What happens when cells don’t have enough oxygen? Some organisms live in an oxygen-free environment. How do they get their energy?
12
Biology Science Department Deerfield High School Cellular Respiration (anaerobic) Anaerobic respiration is also called fermentation, or the process by which energy is released from glucose when oxygen is NOT available. This process allows organisms to continue to produce energy until oxygen is available. However, this process only releases 2 ATP per molecule of glucose.
13
Biology Science Department Deerfield High School Alcoholic Fermentation Anaerobic way of converting energy for yeast and other microorganisms Glucose broken down to produce alcohol, CO 2 and energy (ATP) C 6 H 12 O 6 ethanol + CO 2 + 2 ATP EX: baking bread with yeast fermenting wine & beer
14
Biology Science Department Deerfield High School Fermentation - Bread Source of sugar? DOUGH! (sugar and/or flour) Yeast use up the O 2 and ferment sugar Produce CO 2, which is trapped within tiny bubbles & results in the dough rising Produce ethanol, which evaporates in the baking process
15
Biology Science Department Deerfield High School Fermentation - Wine Source of sugar? GRAPES! Yeast use up the O 2 and ferment sugar Produce CO 2 (kept only in champagne) Produce ethanol (% alcohol varies based on sugar content of grapes and # of fermentations)
16
Biology Science Department Deerfield High School Fermentation - Beer Source of sugar? BARLEY! Yeast use up the O 2 and ferment sugar Hops are added as a preservative and for added flavor Produce CO 2 and ethanol also Various carbohydrates can be used to make alcohol – including wheat, rice, and potatoes!
17
Biology Science Department Deerfield High School Other side effects of fermentation?! “Drunken Swedish moose drowns after fermented apple binge” http://www.usatoday.com/news/offbeat/2006-11-24-moose_x.htm http://www.usatoday.com/news/offbeat/2006-11-24-moose_x.htm
18
Biology Science Department Deerfield High School Lactic Acid Fermentation Anaerobic way of converting energy in animal cells and some microorganisms Glucose broken down to produce lactic acid, CO 2 and energy (ATP) C 6 H 12 O 6 lactic acid + CO 2 + 2 ATP EX: muscle cells during strenuous exercise fermenting cheese, yogurt, sour cream
19
Biology Science Department Deerfield High School Strenuous Exercise Lactic acid is produced by your muscle cells during rapid exercise when the body cannot supply enough O 2 to tissues. Without enough O 2, the body is NOT able to produce all of the ATP that is required. The buildup of lactic acid can cause painful burning in your muscles!
20
Biology Science Department Deerfield High School Minimal ATP Production In the absence of oxygen, anaerobic respiration only releases 2 ATP for each molecule of glucose broken down.
21
Biology Science Department Deerfield High School Comparing ATP Production First, your body breaks down glucose through aerobic respiration to produce 36 ATP per glucose molecule; however, this is a slow process. When muscle cells cannot get enough O 2 they break down glucose through lactic acid fermentation to produce 2 ATP per glucose… Therefore, AEROBIC RESPIRATION is much more efficient in terms of ATP production – 36 ATP compared to 2 ATP!
22
Biology Science Department Deerfield High School Aerobic Training Ex: long runs, biking, swimming Can increase the size and number of mitochondria in muscle cells Can increase the delivery of O 2 to muscles by improving the heart and lungs
23
Biology Science Department Deerfield High School Anaerobic Training Ex: sprints, strides, quick bursts of energy Increase the glycogen levels in the muscles Increase body’s tolerance to lactic acid
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.