Download presentation
Presentation is loading. Please wait.
Published byPiers Lindsey Modified over 8 years ago
1
Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009
2
Overview Intro & Motivation Noise coupling differences & similarities Displacement noise in a 2- & 4-mirror cavity Beam geometry influence on thermal noise GWINC model Results Conclusion S. ChelkowskiET Workshop, Erice, 10/2009Slide 2
3
ET note on QND review S. ChelkowskiET Workshop, Erice, 10/2009Slide 3 Conclusion Sagnac Topology seems to give the best quantum noise performance
4
More realistic comparison of Sagnac and RSE topology S. ChelkowskiET Workshop, Erice, 10/2009Slide 4 RSESAGNAC
5
Noise coupling – Sagnac compared to RSE Quantum noise characteristic change How do various displacement noises couple more due to four mirror cavities, e.g. TN, Seismic noise, etc... Beam geometry changes and influences TN further Higher losses in four mirror arm cavity Etc... S. ChelkowskiET Workshop, Erice, 10/2009Slide 5
6
Coupling of displacement noises S. ChelkowskiET Workshop, Erice, 10/2009Slide 6 Cavity DesignSignalNoise For two mirrors of the 4 mirror cavity: Signal: Noise:
7
Beam geometry changes affect the TN Beam geometry on mirror surface depends on incidence angle Initial beam shape defined by: changes into: S. ChelkowskiET Workshop, Erice, 10/2009Slide 7 Take clipping loss into account in the following analysis Note Top view Front view
8
Beam geometry in the 4 mirror cavity Mirror sizes used: r=31cm Round beam with w=12cm has clipping loss of 1ppm S. ChelkowskiET Workshop, Erice, 10/2009Slide 8 Beam size on one of the four arm cavity mirrors Resulting Beam w x = 12cm & w y = 10cm
9
Consequences for the thermal noise S. ChelkowskiET Workshop, Erice, 10/2009Slide 9 Coating Brownian thermal noise: PSD: CBTN adaptation to elliptical beam: with Beam intensity distribution: Bessel function of 0. order with, we find & Analytically not solvable! Numerical integration
10
Result for CBTN S. ChelkowskiET Workshop, Erice, 10/2009Slide 10 CBTN for elliptical beam shape using the minor beam width The same was done for the Substrate Brownian thermal noise! with CBTN correction factor
11
Result for SBTN S. ChelkowskiET Workshop, Erice, 10/2009Slide 11 CBTN for elliptical beam shape using the minor beam width with SBTN correction factor
12
Result for our specific case S. ChelkowskiET Workshop, Erice, 10/2009Slide 12
13
Current model status Single detector L = 10km Underground Seismic noise reduced Gravity gradient noise reduced Adapted thermal noises & suspension model Optimisation parameters Input laser power P SR, ITM & PRM transmissivity Tuning of SRM Readout quadrature with homodyne detector S. ChelkowskiET Workshop, Erice, 10/2009Slide 13
14
Things to keep in mind This is a topology analysis and there is no intension to create a new baseline sensitivity curve Following sensitivities are lower than the ones presented on the ET webpage No magical factor used e.g. for the grav. gradient noise No squeezing used No cryogenic techniques Nevertheless the following comparison is valid The model can be changed later and a higher performing configuration can be found via optimisation S. ChelkowskiET Workshop, Erice, 10/2009Slide 14
15
Figure of merit and optimisation BHBH and NSNS inspiral ranges Give parameters of standard candles. BHBH: Mass each 30Msol, Distance 10Mpc NSNS: Mass each 1.4Msol, Distance 23Mpc 5D parameter space is scanned automatically for the optimal configuration with an adaptive resolution S. ChelkowskiET Workshop, Erice, 10/2009Slide 15
16
RSE topology results – tuned configuration S. ChelkowskiET Workshop, Erice, 10/2009Slide 16 BHBH: 9736MpcNSNS: 871Mpc
17
RSE topology results – 5D - auto optimisation S. ChelkowskiET Workshop, Erice, 10/2009Slide 17 BHBH optimisation NSNS optimisation BHBH: 11776Mpc NSNS: 949Mpc
18
SAGNAC topology results – 5D - auto optimisation S. ChelkowskiET Workshop, Erice, 10/2009Slide 18 BHBH: 14836MpcNSNS: 1282Mpc
19
Comparison of results – BHBH optimisation - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 19 RSE – tuned SRSAGNAC-optimised BHBH inspiral range for Sagnac topology 52% larger Event rate increased by a factor of 3.5
20
Comparison of results – BHBH optimisation - II S. ChelkowskiET Workshop, Erice, 10/2009Slide 20 RSE – optimised BHBH inspiral range for Sagnac topology 26% larger Event rate increased by a factor of 2.0 SAGNAC-optimised
21
Comparison of results – NSNS optimisation - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 21 RSE – tuned SR BHBH inspiral range for Sagnac topology 47% larger Event rate increased by a factor of 3.2 SAGNAC-optimised
22
Comparison of results – NSNS optimisation - II S. ChelkowskiET Workshop, Erice, 10/2009Slide 22 RSE – optimised BHBH inspiral range for Sagnac topology 35% larger Event rate increased by a factor of 2.5 SAGNAC-optimised
23
Conclusion Sagnac topology performs better than RSE in this analysis BHBH inspiral range increase by 26%-52% NSNS inspiral range increase by 35%-47% Next steps: Use Markov Chain Monte Carlo method for the optimisation, first tests already done How does it perform? Useful for comparison of other topologies in the future Write ET note about this topology analysis Think about alignment requirement changes for 4-mirror cavity S. ChelkowskiET Workshop, Erice, 10/2009Slide 23
24
S. ChelkowskiET Workshop, Erice, 10/2009Slide 24 THE END...
25
Additional slides S. ChelkowskiET Workshop, Erice, 10/2009Slide 25
26
PRM transmissivity algorithm check - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 26 Tuning T prm for a fixed config
27
PRM transmissivity algorithm check - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 27 Auto optimisationManual optimisation
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.