Presentation is loading. Please wait.

Presentation is loading. Please wait.

Time Resolved Infrared Emission from Vibrational Excited Acetylene Following Super Energy Transfer Collisions with Hot Hydrogen Jonathan M. Smith Jianqiang.

Similar presentations


Presentation on theme: "Time Resolved Infrared Emission from Vibrational Excited Acetylene Following Super Energy Transfer Collisions with Hot Hydrogen Jonathan M. Smith Jianqiang."— Presentation transcript:

1 Time Resolved Infrared Emission from Vibrational Excited Acetylene Following Super Energy Transfer Collisions with Hot Hydrogen Jonathan M. Smith Jianqiang Ma *, Michael J. Wilhelm, Matthew Nikow, and Hai-Lung Dai 68th International Symposium on Molecular Spectroscopy * University of Pennsylvannia

2 Observation: Time resolved IR Emission Translationally hot hydrogen o Abundant in photolytic systems (atmosphere) and combustion Relevant ambient targets o HCCH o DCCD: test model o SO 2 Infrared emission o Particularly sensitive to energized species Harmonic scaling of intensity Anharmonic shift Intensity primarily through IR harmonic transition dipole Time resolved o Capture emission of nascent or nearly nascent energized species (10 nsec+ ) o Dynamics Hartland, G.V., Xie, W., Dai, H.-L., Simon, A., Anderson, M.J., Rev. Sci. Instr., 63, 3261 (1992).

3 Super Energy Transfer Experimental Observation: o IR emission from Highly vibrationally excited species following interaction with hot hydrogen atom o Nearly 70% of H translational energy appears in internal energy in HCCH and SO 2 o Significant portion of encounters are “Super” Model: o Collisions sample deep minima on potential surface o Transient chemical complexes facilitate redistribution of energy Justification: o Strong collision assumption o Earlier observations: Chemical complexes facilitating inelastic collisions, “Tug of War” o Theory: Bowman group

4 H + XY( , J)  XY(  ’, J’) + HEnergy transfer (T-V) H + XY( , J)  HX(  ', J’) + Y(  ”, J”)Metathesis H + XY( , J)  HXY(  ’, J’)Combination + ++ ‡ [ ] ‡ + ++ * Generation of Translationally Hot hydrogen From: Wight, C. A.; Leone, S. R., "Vibrational state distributions and absolute excitation efficiencies for T-V transfer collisions of NO and CO with H atoms produced by excimer laser photolysis". J. Chem. Phys. 1983, 79 (10), 4823- 4829. E c.m. H+CO (mass =28) vs. HCCH (mass=26)

5 Energetics: H+HCCH

6 H * + HCCH H 2 S Photolysis 193 nm: σ=2.3 x 10 -18 cm 2 /molecule H E T =53 kcal/mole 50 mTorr HCCH 2 Torr Ar

7 H * + HCCH H 2 S Photolysis 193 nm: σ=2.3 x 10 -18 cm 2 /molecule H E T =53 kcal/mole 50 mTorr HCCH 2 Torr Ar

8 HCCH emission simulation: Energy “yardstick” Excellent accurate spectroscopic effective Hamiltonian: Robert, S.; Herman, M.; Fayt, A.; Campargue, A.; Kassi, S.; Liu, A.; Wang, L.; Di Lonardo, G.; Fusina, L., "Acetylene, 12 C 2 H 2 : new CRDS data and global vibration- rotation analysis up to 8600 cm -1 ". Mol. Phys. 2008, 106 (21), 2581 - 2605… Fundamental emission

9 HCCH emission simulation: Energy “yardstick” Excellent accurate spectroscopic effective Hamiltonian: Robert, S.; Herman, M.; Fayt, A.; Campargue, A.; Kassi, S.; Liu, A.; Wang, L.; Di Lonardo, G.; Fusina, L., "Acetylene, 12 C 2 H 2 : new CRDS data and global vibration- rotation analysis up to 8600 cm -1 ". Mol. Phys. 2008, 106 (21), 2581 - 2605… 7,000 cm -1 emission

10 HCCH emission simulation: Energy “yardstick” Excellent accurate spectroscopic effective Hamiltonian: Robert, S.; Herman, M.; Fayt, A.; Campargue, A.; Kassi, S.; Liu, A.; Wang, L.; Di Lonardo, G.; Fusina, L., "Acetylene, 12 C 2 H 2 : new CRDS data and global vibration- rotation analysis up to 8600 cm -1 ". Mol. Phys. 2008, 106 (21), 2581 - 2605… 9,000 cm -1 emission

11 HCCH emission simulation: Energy “yardstick” Excellent accurate spectroscopic effective Hamiltonian: Robert, S.; Herman, M.; Fayt, A.; Campargue, A.; Kassi, S.; Liu, A.; Wang, L.; Di Lonardo, G.; Fusina, L., "Acetylene, 12 C 2 H 2 : new CRDS data and global vibration- rotation analysis up to 8600 cm -1 ". Mol. Phys. 2008, 106 (21), 2581 - 2605… 13,000 cm -1 emission

12 HCCH emission simulation: Energy “yardstick” Excellent accurate spectroscopic effective Hamiltonian: Robert, S.; Herman, M.; Fayt, A.; Campargue, A.; Kassi, S.; Liu, A.; Wang, L.; Di Lonardo, G.; Fusina, L., "Acetylene, 12 C 2 H 2 : new CRDS data and global vibration- rotation analysis up to 8600 cm -1 ". Mol. Phys. 2008, 106 (21), 2581 - 2605… Observed experimental emission

13 HCCH emission simulation: Energy “yardstick” Excellent accurate spectroscopic effective Hamiltonian: Robert, S.; Herman, M.; Fayt, A.; Campargue, A.; Kassi, S.; Liu, A.; Wang, L.; Di Lonardo, G.; Fusina, L., "Acetylene, 12 C 2 H 2 : new CRDS data and global vibration- rotation analysis up to 8600 cm -1 ". Mol. Phys. 2008, 106 (21), 2581 - 2605…

14 HCCH emission simulation: Energy “yardstick” Excellent accurate spectroscopic effective Hamiltonian: Robert, S.; Herman, M.; Fayt, A.; Campargue, A.; Kassi, S.; Liu, A.; Wang, L.; Di Lonardo, G.; Fusina, L., "Acetylene, 12 C 2 H 2 : new CRDS data and global vibration- rotation analysis up to 8600 cm -1 ". Mol. Phys. 2008, 106 (21), 2581 - 2605…

15 H+HCCH H 2 S Photolysis 193 nm: σ=2.3 x 10 -18 cm 2 /molecule H E T =53 kcal/mole 50 mTorr HCCH 2 Torr Ar

16 Energy distribution and evolution: HCCH * 193nm photolysis of H 2 S in C 2 H 2 and Ar

17 Proposed Model Substantial highly excited HCCH * No vinyl emission observed Short-lived H+DCCD?

18 H+DCCD H 2 S Photolysis 193 nm: σ=2.3 x 10 -18 cm 2 /molecule H E T =53 kcal/mole 50 mTorr DCCD 2 Torr Ar

19 Proposed Model Substantial highly excited HCCH * No vinyl emission observed Short-lived H+DCCD yields [DCCH * ]/[DCCD * ]= ~ 2:1

20 Further support… HBr @ 209.4 nm: 39.6 kcal/mole 62% T-V QCT snapshot

21 Bowman Group: H+HCCH PES global fit of PES 50 000 energies at RCCSD(T)/aug-cc-pVTZ Detailed QCT study Han, Y.-C.; Sharma, A. R.; Bowman, J. M., "Quasiclassical trajectory study of fast H-atom collisions with acetylene". J. Chem. Phys. 2012, 136 (21), 214313.

22 Mechanistic insights from QCT QCT Experiment Find ~10% Super Energy Transfer Mechanistic insights 1.6-1.8 Angtrom 2 cross-section

23 General? H+SO 2 H*+SO 2 E (kcal/mol ) H+SO 2 OH+S O 0 -21.9 -44.2 9.2 27.3 29.2 19.5 59.0 See: Varandas et al., PCCP, 2005, 7, 2305

24 SO 2 IR emission o HBr as fast H atom precusor: 59kcal/mole translational energy with 193nm HBr + 193nm  H (59kcal/mole) + Br*/Br Emitting species in the 1000-1500cm -1 region H(fast) + SO 2  OH + SO* H(fast) + SO 2  H + SO 2 ‡ SO 2 + 193nm  SO* + O SO 2 ‡ ( ν 3 ) SO*/SO 2 ‡ ( ν 1 )

25 Energy distribution and evolution

26 H + SO 2  SO 2 ‡ Conclusion: SO 2 Energy transfer cross section σ: 0.9 ± 0.1 Å 2 Hard sphere cross section of H+SO 2 : 20 Å 2 H* + SO 2  HOSO/HSO 2  OH + SO The lifetime of HOSO/HSO 2 intermediates is reported to be as long as picoseconds

27 Acknowledgements Support Temple Hai-Lung Dai Matt Nikow, Ph.D. [Agilent] Jianqiang Ma, Ph.D. [Univ. Penn.] Michael Wilhelm, Ph.D. Ben Datko (ug, ‘13) Nader Anz (ug, ‘12) Mark Fennimore (ug. ‘11) Emory University Joel Bowman Amit Sharma [Argonne] Yong-Chang Halian [Dalian Univ.] DE-FG 02-86ER134584 DE-FG 02-97ER14782 (JMB) NSF-MRI 1039925: MU3C Temple University


Download ppt "Time Resolved Infrared Emission from Vibrational Excited Acetylene Following Super Energy Transfer Collisions with Hot Hydrogen Jonathan M. Smith Jianqiang."

Similar presentations


Ads by Google