Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fermilab E906/Drell-Yan: Kick-off Don Geesaman Argonne National Laboratory.

Similar presentations

Presentation on theme: "Fermilab E906/Drell-Yan: Kick-off Don Geesaman Argonne National Laboratory."— Presentation transcript:

1 Fermilab E906/Drell-Yan: Kick-off Don Geesaman Argonne National Laboratory

2 E906 It has been a long time since we have been together. Lots of new faces FNAL is now willing to move Lots of details that must be settled This meeting is to get everyone in gear and moving together

3 Fermilab E906/Drell-Yan Collaboration Abilene Christian University Donald Isenhower, Mike Sadler, Rusty Towell Academia Sinica Wen-Chen Chang, Yen-Chu Chen, Da-Shung Su Argonne National Laboratory John Arrington, Don Geesaman *, Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, Paul E. Reimer *, Patricia Solvignon University of Colorado Ed Kinney Fermi National Accelerator Laboratory Chuck Brown University of Illinois Naomi C.R Makins, Jen-Chieh Peng KEK Shin'ya Sawada Kyoto University KenIchi Imai, Tomo Nagae Ling-Tung University Ting-Hua Chang * Co-Spokespersons Los Alamos National Laboratory Gerry Garvey, Mike Leitch, Pat McGaughey, Joel Moss University of Maryland Betsy Beise University of Michigan Wolfgang Lorenzon RIKEN Yuji Goto, Atsushi Taketani, Yoshinori Fukao, Manabu Togawa Rutgers University Ron Gilman, Charles Glashausser, Xiaodong Jaing, Elena Kuchina, Ron Ransome, Elaine Schulte Texas A & M University Carl Gagliardi, Robert Tribble Thomas Jefferson National Accelerator Facility Dave Gaskell Tokyo Institute of Technology Toshi-Aki Shibata, Yoshiyuki Miyachi

4 Measurements and origins of the sea quarks: d-bar/u-bar Drell-Yan allows for selective study sea quarks. –In a fixed target experiment, kinematics, acceptance and parton distributions combine to select interactions dominated by annihilations of antiquarks in the target. What is the structure of the nucleon? –What is d-bar/u-bar? First large-x measurement of sea quarks. –What are the origins of the sea quarks? ¾ p d 2 ¾ pp ¼ 1 2 · 1 + ¹ d ( x ) ¹ u ( x ) ¸ –What is the high-x structure of the proton? Drell-Yan measures beam valence parton distributions at very high-x with no nuclear corrections! CTEQ and MRST want these data!!

5 E906/Drell-Yan Timeline 2001: Approved by Fermilab PAC —scheduling deferred until other fixed target experiments could also be ready to run. 2005-06: Scheme to run E906/Drell-Yan with minimal impact on Neutrino production developed. No need for major fixed target run. 2006: Fermilab PAC re-endorses wisdom of 2001 PAC. 2007: DOE/Nuclear Physics begins funding spectrometer upgrade 2007: Fermilab estimates cost (to Fermilab) to stage E906 at $1.5M in M&S [plus $1.5] manpower. Requests collaboration obtain additional funding to cover the M&S cost. 2008: Additional institutes join collaboration, taking responsibility for some of Fermilab’s tasks, and promise to provide additional money to Fermilab for E906/Drell-Yan infrastructure. 2008: Spectrometer redesign promises reduces cost, savings in DOE/Nuclear Physics money may be transferred to Fermilab. We believe we have identified sufficient resources to run E906. However, with 2008 and 2009 continuing resolutions it still needs to be nailed down with MOU.

6 Spectrometer Redesign: Solid Iron Magnet Replace 1 st open aperture magnet with solid iron magnet –Motivation: Cost--coils for open aperture magnet would have cost ≈1.5M SM3 Coil SM12 Iron Concrete absorber & support Solid iron magnet can be assembled from: –Existing magnet coils from SM3 –Existing Iron blocks from SM12 New tracking chamber at Sta. 3 for better acceptance –KEK, Kyoto, RIKEN, Tokyo Tech New readout electronics –Academia Sinica, Ling-Tung Univ. Add target expertise (UM 2 ) Add gas system

7 Kinematics, Energy loss and multiple scattering What we want is x 2 >0.4 and positive x f Remember at x f =0, x 2 = (m/s 1/2 ), so M ~ 6-7 GeV In 189 inches of Fe These muons multiple scatter by 0.272/P mu ~9 mr Y target resolution of 2 cm In 189” of saturated Fe = 3.3 GeV P t kick 30 Gev muons bend by 110 mr. They lose ~ 7.3 GeV with a sigma of 0.8 GeV Y target resolution of 1.5 cm This defines resolution and scattering angle acceptance But both multiple scattering and energy loss have large non-gaussian tails. costhcmPmu1x GeV Pmu1z GeV Pmu2x GeV Pmu2z GeV 0.3.5031.06-3.5031.06 0.23.4337.31-3.4324.81 0.43.2143.56-3.2118.57 0.62.8049.8-2.8012.32 0.82.1056.06-2.106.07

8 Energy loss fluctuations

9 Monte Carlo of New Design Effect on Experiment (Monte Carlo): Acceptance increased at large-x 2 –Larger fiducial volume of magnet –Decreased acceptance at low-x 2 Resolution degraded by additional energy loss and multiple scattering –Experimental goals still achievable Expected statistical uncertainty Note additional events at large-x 2. Mass Resolution (GeV) x 2 Resolution x 2 Resolution for x 2 > 0.35

10 Collaboration and Funding Additional collaborating institutions (since 2006 proposal): –KEK, Kyoto, RIKEN, Tokyo Tech—Station 3 Tracking; substantial funding of “common” equipment (e.g. beam line and magnets) –Academia Sinica, Ling-Tung Univ.—modern readout electronics via FPGA. –Maryland, Michigan—cryogenic targets These groups have agreed to take on key tasks for the E906/Drell-Yan experiment and demonstrate continued interest in this experiment Funding –DOE/Nuclear Physics has agreed to fund the spectrometer upgrade Initial funds received in FY07. With new design, funds can now be “reprogrammed” to Fermilab for infrastructure (e.g. beam line, etc.) needed for experiment. –Japanese collaborators have indicated they expect to contribute significantly toward Fermilab infrastructure as well. –We believe that we have found sufficient resources to cover Fermilab’s M&S costs for E906. In order to proceed, an MOU detailing Fermilab’s and collaboration’s responsibilities is needed. –Fermilab task force is currently reviewing costs in preparation for this MOU

11 Funding Model DOE NP – FNAL Common items $400k FY07, $200K FY08, $200k FY09 –Stations 1 WC (Colorado) –Hodoscopes (ACU) LANL LDRD –Station 4 prop tubes NSF Gas system Trigger RIKEN –$500k –Station 3 chambers

12 Goals for this meeting Confirm this concepts works Confirm funding model Path to finalize geometry Establish standards –Procedures and Units –Software –? Agree on Schedule Make sure we know all issues for MOU What else do we need to do?

13 Agenda Friday 20 June WH 900 Welcome and Introductions and Overview Geesaman 920 The current Design Reimer 1030 Review of what we need to do Geesaman 1045 Break 1100 Memorandum of Understanding-- Reimer 1130 Schedule Reimer 1200 Lunch 1300 KTEV Hall Visit 1400 Beam Brown 1420 Targets Beise 1440 Station 1 WC Kinney (via proxy) 1500 Station 1 and 2 Hodoscopes Makins 1520 Station 2 WC Gilman 1530TriggerGilman 1545 Break 1600Parton energy lossVitev 1620 Other Physics ideasPeng 1700J-PARCSawada 1600 Collaboration Picnic (Brown’s) Saturday, 21 June 900 Stations 3 WC Goto 920 Stations 3 and 4 Hodoscopes Isenhower 940 Chamber 4 Prop Tube Garvey 1000MagnetsReimer 1020 Code and Document Management Reimer 1040 DAQ and Readout Ting 1110 Fast Monte Carlo Reimer 1125 GEANT Monte Carlo Isenhower 1200 Reconstruction Makins/Leitch 1230 Summary Geesaman Afternoon available for smaller working groups if needed.

Download ppt "Fermilab E906/Drell-Yan: Kick-off Don Geesaman Argonne National Laboratory."

Similar presentations

Ads by Google