Download presentation

Presentation is loading. Please wait.

Published byMarcus Ferguson Modified over 5 years ago

2
The Graph of f (x) = ax 2 All quadratic functions have graphs similar to y = x 2. Such curves are called parabolas. They are U-shaped and symmetric with respect to a vertical line known as the parabola’s axis of symmetry. For the graph of f (x) = x 2, the y-axis is the axis of symmetry. The point (0, 0) is known as the vertex of this parabola.

3
Parabola The Graph of f (x) = ax 2

6
The Graph of f (x) = a(x – h) 2 We could next consider graphs of f (x) = ax 2 + bx + c, where b and c are not both 0. It turns out to be convenient to first graph f (x) = a(x – h) 2, where h is some constant. This allows us to observe similarities to the graphs drawn in previous slides.

13
The Graph of f (x) = a(x – h) 2 + k f (x) = 2(x + 3) 2 5

15
Graphing f (x) = a(x – h) 2 + k The graph of f (x) = a(x – h) 2 + k has the same shape as the graph of y = a(x – h) 2. If k is positive, the graph of y = a(x – h) 2 is shifted k units up. If k is negative, the graph of y = a(x – h) 2 is shifted |k| units down. The vertex is (h, k), and the axis of symmetry is x = h. The domain of f is ( , ). If a > 0, the range is f is [k, ). A minimum function value is k, which occurs when x = h. For a < 0, the range of f is ( , k]. A maximum function value of k occurs when x = h.

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google