Presentation is loading. Please wait.

Presentation is loading. Please wait.

Review of Mesoscopic Thermal Transport Measurements

Similar presentations


Presentation on theme: "Review of Mesoscopic Thermal Transport Measurements"— Presentation transcript:

1 Review of Mesoscopic Thermal Transport Measurements
Li Shi IBM Research & University of Texas at Austin IMECE01, New York, November 12, 2001

2 Outline 1. Thermal Transport in Micro-Nano Devices
2. Thermal Property Measurements of Low-Dimensional Structures: -- 2D: Thin Films -- 1D: Nanotubes, Nanowires -- Quantized Thermal Conductance 3. Thermal Microscopy of Micro-Nano Devices

3 1. Micro-Nano Devices Gate Drain Source Nanowire Channel
MEMS/NEMS Bio Chip (Wu et al., Berkeley) Microelectronics Si FET (Hu et al., Berkeley) Gate Drain Source Nanowire Channel Consisting of 2D and/or 1D structures

4 Molecular Electronics
Nanotube Nanowire Arrays (Lieber et al., Harvard) TubeFET (McEuen et al., Berkeley) Nanotube Logic (Avouris et al., IBM Research)

5 Length Scale - + 1 mm Size of a Microprocessor MEMS Devices 1 mm
Thin Film Thickness in ICs 100 nm l (Mean free path at RT) 10 nm Nanotube/ Nanowire Diameter 1 nm lF (Fermi wavelength) Atom L W  l: boundary scattering W  lF: quantized effects L  l: ballistic transport - + W 1 Å

6 2. Thermal Conductivity: k = ke + kp
C ~ T d lst lst ~ lum 1 3 kp = C v l Phonon mfp Specific heat Sound velocity lum ~ eQ/ T If T > Q, C ~ constant If T << Q, C ~ T d (d: dimension) Specific heat : Mean free path: Static scattering (phonon -- defect, boundary): lst ~ constant Umklapp phonon scattering: lum ~ eQ/ T

7 2.1 Measurements of Thin-Film Thermal Conductivity
The 3w method -- Cahill, Rev. Sci. Instrum. 61, 802 (1990) Metal line Thin Film I ~ 1w T ~ I2 ~ 2w R ~ T ~ 2w V~ IR ~3w L 2b V I0 sin(wt) Si Substrate

8 SOI Thin Films Ashegi, Leung, Wong, Goodson, Appl. Phys. Lett. 71, 1798 (1997) 2. Ju and Goodson, Appl. Phys. Lett. 74, 3005 (1999) Courtesy of Ref. 2

9 Anisotropic Polymer Thin Films
Ju, Kurabayashi, Goodson, Thin Solid Films 339, 160 (1999) By comparing temperature rise of the metal line for different line width, the anisotropic thermal conductivity can be deduced

10 Superlattices 1. Song, Liu, Zeng, Borca-Tasiuc, Chen, Caylor, Sands, Appl. Phys. Lett. 77, 3154 (2000) 2. Huxtable, Majumdar et al., Micro Therm. Eng. (2001)

11 2.2 1D Nanostructure: (i) Nanowires
Si Nanowires for Electronic Applications Bi Nanowires for TE Cooling (Dresselhaus et al., MIT) Top View Al2O3 template Boundary scattering + modified phonon dispersion (group velocity):  Suppressed thermal conductivity Volz and Chen, Appl. Phys. Lett. 75, 2065 (1999)

12 (ii) Carbon Nanotube Single Wall Multiwall Super high current
109 A/cm2 Single Wall -- Semiconducting or Metallic E k Metal l ic Semiconducting F microns 1-2 nm Multiwall -- Metallic 10 nm

13 Thermal Conductivity of Nanotubes
Carbon Nanotube: high v, long l  high k 3000 ~ 6000 W/m-K at room temperature (e.g. Berber et al., 2000) Theoretical Expectation: Previous Measurement of Nanotube Mats: ~ 200 W/m-K (Hone et al., 2000) Nanotube mat Unknown filling factor Thermal resistance at tube- tube junctions

14 The 3w method for 1D Structures
-- Lu, Yi, Zhang, Rev. Sci. Instrum. 72, 2996 (2001) Low frequency: V(3w) ~ 1/k High frequency: V(3w) ~ 1/C Tested for a 20 mm dia. Pt wire Results for a bundle of MW nanotubes: C ~ linear T dependence, low k ~ 100 W/mK V I0 sin(wt) Electrode Wire Substrate 3w Mechanism: DT~ V2/k and R ~ Ro + aDT Applicable to an individual SW nanotube? -- R4p = Rjunction + Rbulk -- Rjunction  Rjunction,0 + aDT -- Rbulk ~ Rbulk (V) even when DT = 0

15 Another 1D Method -- A Hybrid Nanotube Microdevice
Pt heater line Multiwall nanotube SiNx beam Pt heater line Suspended island

16 Device Fabrication (c) Lithography Photoresist (a) CVD SiNx SiO2
(d) RIE etch (b) Pt lift-off Pt (e) HF etch

17 Measurement Scheme Gt = kA/L Thermal Conductance: I
Q I R h = h R t R h s VTE Thermopower: Q = VTE/(Th-Ts) T u be Q = IR l l Environment I T 10 nm multiwall tube Island Beam Pt heater line

18 Measurements Resistance of the Pt line Cryostat: T : 4-350 K
P ~ 10-6 torr Resistance of the Pt line Resistance vs. Joule Heat m

19 Thermal Conductivity  T2 l ~ 0.5 mm 14 nm multiwall tube
Room temperature thermal conductivity ~ 3000 W/m-K k ~ T2 : Quasi 2D graphene behavior at low temperatures Umklapp scattering ~ 320 K , l ~ 500 nm Nearly ballistic phonon transport Kim, Shi, Majumdar, McEuen, Phy. Rev. Lett, in press

20 Thermal Conductivity Interlayer phonon mode filled – 2D
k(T) (W/m K) T (K) 3000 2000 1000 300 200 100 Interlayer phonon mode filled – 2D 14 nm individual MW tube 2.0 80 nm bundle Junctions in bundles reduce k and lst 2.5 Interlayer phonon mode unfilled – 3D 200 nm bundle

21 Thermopower For metals w/ hole-type majority carriers:  T

22 More on 1D Measurements Single Wall Nanotube
Short lst and suppressed k found for Si nanowires (D. Li et al.) Bi and Bi2Te3 wires to be measured Challenges of measuring single wall nanotube Single Wall Nanotube

23 2.3 Quantized Thermal Conductance
Electron thermal conductance quantization (Molenkamp et al., 1991) Quantum point contact Phonon thermal conductance quantization (Schwab et al., 1999) Quantum of Thermal Conductance

24 3. Thermal Microscopy of Micro-Nano Devices
Techniques Spatial Resolution Infrared Thermometry mm* Laser Surface Reflectance [1] mm* Raman Spectroscopy mm* Liquid Crystals mm* Near-Field Optical Thermometry [2] < 1 mm Scanning Thermal Microscopy (SThM) < 100 nm *Diffraction limit for far-field optics 1. Ju & Goodson, J. Heat Transfer 120, 306 (1998) 2. Goodson & Asheghi, Microscale Thermophysical Eng. 11, 225 (1997)

25 Scanning Thermal Microscope
Atomic Force Microscope (AFM) + Thermal Probe Laser Deflection Sensing Cantilever Temperature Sensor Thermal X T Sample Topographic X Z X-Y-Z Actuator

26 Thermal Probe Rts Rt Ts Ta Tt Rc Q

27 Probe Fabrication 200 nm Pt SiO2 1 mm SiO2 tip

28 Microfabricated Probes
Pt Line Tip Laser Reflector Pt-Cr Junction SiNx Cantilever Cr line 10 mm Shi, Kwon, Miner, Majumdar, J. MicroElectroMechanical Sys., 10, p. 370 (2001)

29 Locating Defective VLSI Via
Topography Tip Temperature Rise (K) 19 21 40 mA Via Metal 1 23 28 25 Metal 2 20 mm Cross Section Passivation Metal 2 Collaboration: TI Shi et al., Int. Reli. Phys. Sym., p. 394 (2000) Dielectric 0.4 mm Via Metal 1

30 Calibration S = R W(mm) S(K/K) 0.56 W

31 Tip-Sample Heat Transfer
Why saturated? W W , air  W = 0.2 mm, Air ~ Solid + Liquid W < 0.1 mm, Air << Solid + Liquid

32 Why GSol Saturated? Elastic-Plastic Contact of an Asperity and a Plane What is the thermal conductance at the nano contact?

33 Thermal Transport at Nano Contacts
Modeling results: GLiq ~ 7 nW/K, GSol ~ 0.8 W/m2-K-Pa L < Mean free path of air or phonon Shi and Majumdar, J. Heat Transfer, in press

34 Thermal Imaging of Nanotubes
Multiwall Carbon Nanotube Distance (nm) Height (nm) 30 nm 10 5 400 200 -200 -400 Thermal Topography Topography 3 V 88 m A 1 1 m m m m Spatial Resolution V) 30 20 10 400 200 -200 -400 m 30 nm 50 nm 50 nm Thermal signal ( Distance (nm) Shi, Plyosunov, Bachtold, McEuen, Majumdar, Appl. Phys. Lett., 77, p (2000)

35 Electron Transport in Nanotube
Ballistic (long mfp) Diffusive (short mfp) - - + + - - mfp: electron mean free path Multiwall Ballistic (Frank et al., 1998) Diffusive (Bachtold et al., 2000) Single Wall Semiconducting Diffusive (McEuen et al., 2000) Single Wall Metallic Ballistic at low bias (Bachtold ,et al.) Diffusive at high bias (Yao et al., 2000)

36 Dissipation in Nanotube
bulk Electrode Electrode Junction Diffusive – Bulk Dissipation T T profile  diffusive or ballistic X Ballistic – Junction Dissipation T X

37 Multiwall Nanotube Thermal Topographic DTtip A B 3 K 1 mm
Diffusive at low and high biases B A A B

38 Metallic Single Wall Nanotube
Low bias: ballistic contact dissipation High bias: diffusive bulk dissipation Optical phonon Topographic Thermal DTtip A B C D 2 K 1 mm

39 Semiconducting Single Wall Nanotube
Topographic Thermal Bulk heating at low and high biases  diffusive A B DTtip 2 K 1 mm Nanotube field-effect transistor Contact Nanotube Vs Vd = gnd SiO2 Si Gate Vg

40 More on Thermal Microscopy
UHV and low-temperature thermal and thermoelectric microscopy Near-field radiation and solid conduction through a point contact, e.g. in thermally-assisted magnetic writing and thermomechanical data storage

41 Summary Nanotube Thermal Conductivity --Majumdar, McEuen
Thin film Thermal Conductivity --Cahill, Goodson, Chen, Majumdar L 2b V I0 sin(wt) Thermal Conductance Quantum --Roukes Thermal Microscopy of Nanotubes -- Majumdar


Download ppt "Review of Mesoscopic Thermal Transport Measurements"

Similar presentations


Ads by Google