Presentation is loading. Please wait.

Presentation is loading. Please wait.

5 iv 2012CIFAR1 (How) Do Spinning Holes make Jets? Roger Blandford, KIPAC Stanford with Jonathan McKinney (KIPAC, Maryland) Sasha Tschekovskoy (Princeton)

Similar presentations


Presentation on theme: "5 iv 2012CIFAR1 (How) Do Spinning Holes make Jets? Roger Blandford, KIPAC Stanford with Jonathan McKinney (KIPAC, Maryland) Sasha Tschekovskoy (Princeton)"— Presentation transcript:

1 5 iv 2012CIFAR1 (How) Do Spinning Holes make Jets? Roger Blandford, KIPAC Stanford with Jonathan McKinney (KIPAC, Maryland) Sasha Tschekovskoy (Princeton) Nadia Zakamska (JHU)

2 22 iv 2010 Sackler Lecture Princeton Cygnus A 3C31 3C75 Extragalactic Jets Pictor A M87 NGC 326

3 5 iv 2012CIFAR Pictor A Current Flow Nonthermal emission is ohmic dissipation of current flow? Electromagnetic Transport 10 18 not 10 17 A DC not AC No internal shocks New particle acceleration mechanisms Pinch stabilized by velocity gradient? Equipartition in core Wilson et al 3

4 5 iv 2012CIFAR4 832AGN+268Candidates+594Unidentified!

5 3C454.3 5 iv 2012CIFAR5 2x10 50 erg s -1 isotropic Breaks due to recombination radiation? Marscher

6 Radio Monitoring (OVRO 40m) ~1500 sources Radio and  -ray active Spectrum, polarization 5 iv 2012CIFAR6 Max-Moerbeck etal

7 Rapid MAGIC variation PKS 1222+21 –10 min MKN 501 –2min? PKS 2155-304 –“Few hr”? 5 iv 2012CIFAR7 PKS 1222+21 (Aleksik et al) How typical? How fast is GeV variation? How typical? How fast is GeV variation?

8 3C 279: multi- observation of  -ray flare ~30percent optical polarization => well-ordered magnetic field  ~ 20d  -ray variation => r~  2 c  ~ pc or  disk ? Correlated optical variation? => common emission site X-ray, radio uncorrelated => different sites Rapid polarization swings ~200 o => rotating magnetic field in dominant part of source Abdo, et al Nature, 463, 919 (2010) r ~ 100 or 10 5 m? 5 iv 20128CIFAR

9 PKS1510+089 (Wardle, Homan et al) 5 iv 2012CIFAR9 z=0.36 Rapid swings of jet, radio position angle High polarization ~720 o (Marscher) Channel vs Source TeV variation (Wagner / HESS) EBL limit r min ; r TeV >r GeV (B+Levinson) Rapid swings of jet, radio position angle High polarization ~720 o (Marscher) Channel vs Source TeV variation (Wagner / HESS) EBL limit r min ; r TeV >r GeV (B+Levinson)  app =45

10 Jansky VLA (New Mexico) 5 iv 2012CIFAR10 27 antennae, 1-50GHz (+0.08GHz) 10xsensitivity… 50 mas resolution

11 SS433 and the W50 nebula Chandler Outflows, Winds, and Jets Workshop, March 2012 11

12 ALMA First results 5 iv 2012CIFAR12 Atacama desert 5km high 66 telescopes, 300  - 1cm eventually ~ 5mas resolution

13 5 iv 201213CIFAR B M  Rules of thumb:  B R 2 ; V ~   ; I~ V / Z 0 ; P ~ V I PWN AGN GRB B 100 MT 1 T 1 TT  10 Hz 10  Hz 1 kHz R 10 km 10 Tm 10 km V 3 PV 300 EV 30 ZV I 300 TA 3 EA 300 EA P 100 XW 1 TXW 10 PXW Unipolar Induction UHECR!

14 5 iv 2012CIFAR Intermediate Mass Supply Thin, cold, steady, slow, radiative disk Specific energy e = -  l/2 G Energy radiated is 3 x the local energy loss 14

15 5 iv 2012CIFAR Low, High Mass Supply M’<<M’ E, tenuous flow cannot heat electrons and cannot cool M’>>M’ E, dense flow traps photons and cannot cool Thick, hot, steady, slow, adiabatic disk Bernoulli function: b =e+h G Energy transported by torque unbinds gas => outflow ADiabatic Inflow-Outflow Solution 15

16 5 iv 2012CIFAR16  x. Dipolar or Quadrupolar? Even field Odd current Lovelace, Camenzind, Koide, RB Odd field Even current Also prograde vs retrograde?

17 5 iv 2012CIFAR17

18 “Observing” Simulated Jets Synchrotron Radiation 5 iv 2012CIFAR18 We know P’, B’, N’, V on grid Work in jet frame Rotate spatial grid so that observer along z direction Shear in t – z space introducing t o =t-z Make emission model eg j’ ~ P’ B’ 3/2 ’  ;  ’  P’B’ 2 ’  Polarization – perpendicular to projected field in cm frame t z toto z’ z Vß

19 “Observing” Simulated Jets Inverse Compton Radiation Work in jet frame Compute incident radiation along all rays from earlier observer times Compute j  directly 5 iv 2012CIFAR19 Observer s  r [r-s,t o -s(1-cos  )] z

20 “Observing” Simulated Jets Pair Opacity 5 iv 2012CIFAR20 External and internal radiation Internal radiation varies

21 5 iv 2012CIFAR21 Disk Light Optical emission from jet with  ~ 3-4 Zakamska, RB & McKinney in prep

22 Quivering Jets Observe  -rays (and optical in 3C279) Gammasphere   ~1, 100-1000m ~ E  Rapid variation associated with convected flow of features (2min in Mkn 501) Slow variation associated with change of jet direction on time scale determined by dynamics of disk (precession?) or limited by inertia of surrounding medium or both as with m=1 wave mode. 5 iv 2012CIFAR22

23 5 iv 2012CIFAR23 Total Flux and Degree of Polarization

24 Summary 5 iv 2012CIFAR24 New observations of AGN and stellar relativistic jets Fermi, MAGIC, optical polarimetry, JVLA, ALMA… 3D Black Hole MHD simulations possible for >10 6 m Efficient energy extraction Powerful winds Jet Disk Oscillations “Observe” simulated relativistic jets Radio, g-rays, optical polarization

25 Dynamical elements Bulk flow Shocks Shear flow Plasmoids, flares, minijets,magnetic rockets… –Lorentz boosting Precession –Disk –m=1 instability Turbulence 5 iv 2012CIFAR25 Each of these elements changes the field and the particles

26 Pair vs Ion Plasmas Pairs must be heavily magnetized to avoid radiative drag Circular polarization, Faraday rotation/pulsation Expect? pairs, field todecrease, ions to increase along jet 5 iv 2012CIFAR26

27 5 iv 201227CIFAR Particle acceleration in high  environments Internal shocks are ineffectual Reconnection can be efficient –E>B?? Shear flow in jets –Full potential difference available particles accelerated when undergo polarization drift along E –UHECR (eg Ostrowski & Stawarz, 2002) Fast/intermediate wave spectrum –Nonlinear wave acceleration(Blandford 1973…) Mutual evolution of wave cascade and particle distribution function –Charge starvation (eg Thompson & Blaes 1997) Force-free allows E>B - catastrophic breakdown

28 Particle Acceleration 5 iv 2012CIFAR28 S-C -1 transition quite high in BLLacs “Theoretically” E  <  -1 m e c 2 ~60MeV cf Crab Nebula, UHECR Large scale electric fields Lossy coax?? Follow particle orbits. Which particles carry the current Is the momentum elctromagnetic?

29 5 iv 2012CIFAR29 Faraday Rotation Broderick & McKinney Signature of toroidal field/axial current Rotation from sheath Observations ??? Simulation

30 5 iv 2012CIFAR30 Telegraphers’ Equations

31 5 iv 2012CIFAR31 Relativistic Reconnection McKinney & Uzdensky High  flow Hall effects may save Petschek mechanism Anomalous resistivity? Also for AGN Petschek GRBs ?

32 5 iv 2012CIFAR32

33 Inhomogeneous Sources Radio synchrotron photosphere, r ~  –Doppler boosting Compton gammasphere, r ~ E? –Internal, external radiation –Test with variability, correlation Electron acceleration –>100 TeV electrons 5 iv 2012CIFAR33 S E SC -1

34 Summary Protostars->GRBs->Quasars Location, mechanism, collimation, origin…? FGST+TeV+multi- observations of blazars Major monitoring campaigns Rotating polarization, rapid variation GRMHD simulations answering basic questions about flows, dynamics “Observations” of simulations now possible to (in)validate simple phenomenological models and test against data and “best” examples. 5 iv 2012CIFAR34

35 3D GRMHD Simulations >10 5 m Kerr-Schild, HARM, 512x768x64 –Quasi-steady state Build up flux –back reaction –Thick spinning disks, suppress MRI –Dipolar (not quadrupolar) makes jets Efficient extraction of spin energy-> jets –Prograde (not retrograde) more efficient Wind outflows –Poorly collimated, slow QPOs, –~70m, a~ 0.9; Q~100 (jet) ~3 (disk) Strong intermittency –Helical instability m=1 5 iv 2012CIFAR35 McKinney, RB; McKinney, Tschekovskoy, RB Tschevoskoy et al Talk on MONDAY


Download ppt "5 iv 2012CIFAR1 (How) Do Spinning Holes make Jets? Roger Blandford, KIPAC Stanford with Jonathan McKinney (KIPAC, Maryland) Sasha Tschekovskoy (Princeton)"

Similar presentations


Ads by Google