Presentation is loading. Please wait.

Presentation is loading. Please wait.

Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Intégration de la Set Theory américaine (AST)

Similar presentations


Presentation on theme: "Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Intégration de la Set Theory américaine (AST)"— Presentation transcript:

1 Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola.ch www.encyclospace.org Intégration de la Set Theory américaine (AST) dans la théorie moderne européenne

2 Contents Introduction Contour Spaces Pitch Spaces Pitch Class Spaces Introduction Contour Spaces Pitch Spaces Pitch Class Spaces Robert D. Morris: Composition with Pitch-Classes Yale U Press, New Haven 1987

3 Introduction + No mumbo-jumbo theory mixture of cognitive science and psychology î $ software for AST, all on Mac: CMAP (C++) by Harris & Brinkman (& Castine) SET-SLAVE (Common LISP) Amuedo OpenMusic (Common LISP) Agon & Assayag; Andreatta. + Systematic approach (although very restricted domain): Rigorous definitions, complete tables. – Aboundance of abbreviations such as TTO, SC, ICV, pcs, ics,... – Trival „home-made“ mathematics: Elementary group theory and combinatorics No standard concepts, such as normal subgroup, etc. – No attempts to generalize results, e.g. from n = 12 to general n in Pitch classes Ÿ n.

4 Introduction Alteration Theorem of Robert M. Mason Enumeration of Synthetic Music Scales (...) J. of Music Theory 14, 1970 In cyclic pitch Ÿ 12, if E, F are two scales with card(E) = Card(F) = m ≥ 7, then either we find 2 # and 3 Ÿ 2 # and 3 Ÿ or 3 # and 2 Ÿ such that F is generated from E by some alterations in this range. „Proof“: List explicitely all possible cases of these so-called Busoni scales. In cyclic pitch Ÿ 12, if E, F are two scales with card(E) = Card(F) = m ≥ 7, then either we find 2 # and 3 Ÿ 2 # and 3 Ÿ or 3 # and 2 Ÿ such that F is generated from E by some alterations in this range. „Proof“: List explicitely all possible cases of these so-called Busoni scales.

5 Introduction Alteration Theorem (Mazzola) Gruppen und Kategorien in der Musik Heldermann, Berlin 1985 In cyclic pitch Ÿ n, if E, F are two scales with card(E) = Card(F) = m, then we find k # and t Ÿ with k+t = n-m k # and t Ÿ with k+t = n-m such that F is generated from E by some alterations in this range. F may even be generated by a sequence of elementary alterations, i.e., by shifts of one single pitch by one unit into an empty slot. Proof: By induction on n-m, 3 pages. In cyclic pitch Ÿ n, if E, F are two scales with card(E) = Card(F) = m, then we find k # and t Ÿ with k+t = n-m k # and t Ÿ with k+t = n-m such that F is generated from E by some alterations in this range. F may even be generated by a sequence of elementary alterations, i.e., by shifts of one single pitch by one unit into an empty slot. Proof: By induction on n-m, 3 pages.

6 FormsForms F = form name F = form name an identifier monomorphism in Mod @ id: Functor(F) >  Frame( √ ) an identifier monomorphism in Mod @ id: Functor(F) >  Frame( √ ) Frame( √ ) >>>> Functor(F) one of five „space“ types one of five „space“ types a name diagram √ in Mod @ a name diagram √ in Mod @ F:id.type( √ ) Introduction

7 Frame( √ )-space for type: synonyme √ = „G“  Functor(G) synonyme() =Functor(G) synonyme( √ ) = Functor(G) renamingrenaming simple √ = „“  @B simple() =@B  simple( √ ) = @B representationrepresentation limit √ = name diagram  Mod @ limit() = lim(n. diagram  Mod @ ) limit( √ ) = lim(n. diagram  Mod @ ) conjunctionconjunction colimit √ = name diagram  Mod @ colimit() = colim(n. diagram  Mod @ ) colimit( √ ) = colim(n. diagram  Mod @ ) disjunctiondisjunction power √ = „G“  Functor(G) power() =  Functor(G) power( √ ) =  Functor(G) collectioncollection Introduction

8 Frame( √ ) >> Functor(F) Form F DenotatorsDenotators K  @ K  @Functor(F) „A-valued point“ D = denotator name A address A K D:A@F(K)D:A@F(K) Introduction

9 PointSpace 0  PointSpace n „Linear“: Ÿ „Cyclic“: Ÿ n D:0@ PointSpace n (d) D: Ÿ k-1 @ PointSpace n (d 0, d 1,... d k-1 ) single „points“ serial „motif“ PointSpace n :id.Syn(PiMod n ) PiMod n :id.Simple( Ÿ n ) Introduction

10 X:0@SetSpace n (d,e,f,g,...) S: Ÿ k-1 @SetSpace n (s 0, s 1,... s k-1 ) Sets of zero-addressed „points“ Sets of Ÿ k-1 -addressed serial motives SetSpace n :id.Power(PointSpace n ) PointSpace n :id.Syn(PiMod n ) Introduction

11 C-Spaces A c-space is a space which describes contour parameters, typically of pitch-related quality X. It has no precise relation to the physical/symbolic parameters, it is just a kind of integer quantification of abstract ordering relations. c-space(X):id.Syn(PiMod 0 ) c-setspace(X):id.Power(c-space(X)) I n :0@ c-setspace(X) (0,1,2,... n-1) D:0@ c-space(X)( d), d  I n cp = contour pitch of order n 0 n-1

12 C-Spaces S:0@c-setspace(X)(s,t,u,...) S  I n cpset = contour pitch set of order n contour for c-space(X) length(C) = k CONT n,k (X) contour for c-space(X) length(C) = k CONT n,k (X) C: Ÿ k-1 @c-space(s 0, s 1,... s k-1 ), s i  I n 0 k-1 miniature global composition

13 C-Spaces K 4  CONT n,k (X)  CONT n,k (X) C: Ÿ k-1 @c-space(s 0, s 1,... s k-1 ) K 4 ={Id, R, I, IR} I R IR Id Contour Symmetries

14 C-Spaces K 4 ={Id, R, I, IR} COM: CONT n,k (X)  Ã k  k ( Ÿ ) COM(C) i,j = sign(C j-1 -C i-1 ) COM: CONT n,k (X)  Ã k  k ( Ÿ ) COM(C) i,j = sign(C j-1 -C i-1 ) COM(C) COM(C) = Comparison Matrix K 4  Ã k  k ( Ÿ )  Ã k  k ( Ÿ ) I.M = M t = transposed matrix R.M = M r = 180 degree rotated matrix IR.M = M k = codiagonal transposed matrix K 4  Ã k  k ( Ÿ )  Ã k  k ( Ÿ ) I.M = M t = transposed matrix R.M = M r = 180 degree rotated matrix IR.M = M k = codiagonal transposed matrix CONT n,k (X) Ã k  k ( Ÿ ) COM K 4 \CONT n,k (X) K 4 \ Ã k  k ( Ÿ ) K4\K4\K4\K4\ K4\K4\K4\K4\ Contour classes Similarity

15 C-Spaces M,N  Ã k  k ( Ÿ ) skew-symmetric matrices SIM(M,N) = card{(i,j)|i<j,M i,j = N i,j }.2/k(k-1) d COM (M,N) = (2/k)  { ∑ i<j (M i,j - N i,j ) 2 } Pseudo-metric on set CONT n,k (X) of contours of length k The order n is not relevant here, forget it, take union CONT k (X) of all CONT n,k (X). M,N  Ã k  k ( Ÿ ) skew-symmetric matrices SIM(M,N) = card{(i,j)|i<j,M i,j = N i,j }.2/k(k-1) d COM (M,N) = (2/k)  { ∑ i<j (M i,j - N i,j ) 2 } Pseudo-metric on set CONT n,k (X) of contours of length k The order n is not relevant here, forget it, take union CONT k (X) of all CONT n,k (X). Distances and Similarity of Contours Apply this to define a topology on the set MOT all motives!

16 M M H E L C (M) M EH E H C-Spaces

17 COM-shape type. General shape-type theory: topologies on motive spaces, topologies on motive spaces, group actions, group actions, orbit distances, etc. orbit distances, etc. developed by Chantal Buteau & G.M. See ToM or Musicae Scientiae Vol. IV, No.2, 2000 COM-shape type. General shape-type theory: topologies on motive spaces, topologies on motive spaces, group actions, group actions, orbit distances, etc. orbit distances, etc. developed by Chantal Buteau & G.M. See ToM or Musicae Scientiae Vol. IV, No.2, 2000 com k : MOT k  CONT k (X)  Ã k  k ( Ÿ ) skew com k (M) = COM(C(M)) k = 2,3,... com k (M) = COM(C(M)) k = 2,3,... com k : MOT k  CONT k (X)  Ã k  k ( Ÿ ) skew com k (M) = COM(C(M)) k = 2,3,... com k (M) = COM(C(M)) k = 2,3,... Abstract motive space

18 C-Spaces Open Balls around Motives M Let  > 0 and M  MOT. U  (M) = {N  MOT | ex. M*  N, card(M*) = card(M), d COM (M, M*) <  }

19 Ÿ s  Ÿ t s ≤ t, define morphism f: Ÿ s  Ÿ t e 0 ~> e i(0) e 1 ~> e i(1)................. e s ~> e i(s) S1S1 SkSk Ÿ 12 e0e0 e1e1 eses ŸsŸsŸsŸs S 1.f S k.f Ÿ 12 f@K^ Functorial Locs Address change!

20 C-Spaces Theorem: The system of open balls {U  (M) | M  MOT,  > 0 } is the base of a topology T com on MOT, i.e., for any two such balls U  (M), U  ‘ (M‘), we have U  (M)  U  ‘ (M‘) =  U  (i) (M i ) Theorem: The system of open balls {U  (M) | M  MOT,  > 0 } is the base of a topology T com on MOT, i.e., for any two such balls U  (M), U  ‘ (M‘), we have U  (M)  U  ‘ (M‘) =  U  (i) (M i ) This is due to the inheritance property of com shape type: „If two motives are similar, then so are their submotives.“ Such a property is not true for Morris‘ INT shape type of successive intervals.

21 C-Spaces Theory Implemented in RUBATO‘s MeloRubette Theory of motivic weights, sheaves of weight functions on motivic topologies. Theory of motivic weights, sheaves of weight functions on motivic topologies.

22 P-Spaces x:0@[M 1/n ](x) PiMod 0 :id.Simple( Ÿ ) [M 1/n ]:id.Syn(PiMod 0 ) pitch(x) = F 0.M x/n M = 2, n = 12 p-spacep-space pitchpitch S: Ÿ k-1 @[M 1/n ](S 0, S 1,... S k-1 ) pseg(ment)pseg(ment)

23 P-Spaces PiMod 0 :id.Simple( Ÿ ) [M 1/n ]:id.Syn(PiMod 0 ) [M 1/n ]sets:id.Power([M 1/n ]) X:0@[M 1/n ]sets (a,b,c,d,...) Unordered pitch set „pset“ X: Ÿ k-1 @ [M 1/n ]sets (a,b,c,d,...) X: Ÿ k-1 @ [M 1/n ]sets (a,b,c,d,...) Set of psegs SEG k [M 1/n ]: Ÿ k-1 @ [M 1/n ]sets (all segments) abelian group

24 P-Spaces [M 1/n ]:id.Syn(PiMod 0 ) Ordered p-space interval ip  a,b  = b-a Unordered p-space interval ip{a,b} =  ip  a,b   For unordered pset P: 0@ [M 1/n ]sets (u,v,x,y,...) Interval content: int(P) = (ip{a,b}) (a,b)  P  P Ordered p-space interval ip  a,b  = b-a Unordered p-space interval ip{a,b} =  ip  a,b   For unordered pset P: 0@ [M 1/n ]sets (u,v,x,y,...) Interval content: int(P) = (ip{a,b}) (a,b)  P  P x:0@[M 1/n ](x) Pitch Intervals

25 P-Spaces Give a pseg S: Ÿ k-1 @[M 1/n ](S 0, S 1,... S k-1 ) INT(S): Ÿ k-2 @[M 1/n ](S 1 -S 0, S 2 -S 1,... S k-1 -S k-2 ) Interval succession of pseg S C(S): Ÿ k @[M 1/n ](S 0, S 1,... S k-1, S 0 ) „Cyclic extension“ of pseg S INT: SEG k [M 1/n ]  SEG k-1 [M 1/n ] C: SEG k [M 1/n ]  SEG k+1 [M 1/n ] CINT=INT  C: SEG k [M 1/n ]  SEG k [M 1/n ] Cyclic intervall succession

26 P-Spaces  : SEG k [M 1/n ]  SEG k [M 1/n ] PermutationsPermutations  (S): Ÿ k-1 @[M 1/n ](S  (0),... S  (i),...S  (k-1) )  : SEG k [M 1/n ]  SEG k [M 1/n ] Canonical operators  (S): Ÿ k-1 @[M 1/n ](  (S 0 ),...  (S i ),...  (S k-1 )) Rotation r t Retrogression R Rotation r t Retrogression R Ÿ k-1  Ÿ k-1  Ÿ  Ÿ S SEG k [M 1/n ] Sym k Ÿ@ŸŸ@ŸŸ@ŸŸ@Ÿ Address change! Functorial!   Sym k  =T n M m = e n.m  Ÿ @ Ÿ

27 P-Spaces Proposition: On SEG k [M 1/n ], the actions of canonical operators and permutations commute. On SEG k [M 1/n ], the actions of canonical operators and permutations commute. INT is invariant under translations: INT  T n = INT INT is invariant under translations: INT  T n = INT INT commutes with multiplications:INT  M n = M n  INT INT commutes with multiplications:INT  M n = M n  INT INT anticommutes with retrogression: INT  R = —R  INT INT anticommutes with retrogression: INT  R = —R  INT Remark: such results, also valid for modular pitch, are used to classify n-phonic series and all-interval series by Harald Fripertinger, e.g. n = 12: G 12 =  retrogression, all affine automorphisms of Ÿ 12  Card (G 12 \ALLSER 12 ) = 267

28 s: Ÿ k-1 @ pc-space n (s 0, s 1,... s k-1 ) PC-Spaces PiMod n :id.Simple( Ÿ n ) pc-space n :id.Syn(PiMod n ) x:0@ pc-space n (x) Pitch class segment pcseg Pitch class pc pc-spaces

29 U n :0@ pc-setspace n (all pcs...) PC-Spaces pc-space n :id.Syn(PiMod n ) X:0@ pc-setspace n (x,y,z,...) (Unordered) pitch class set pcset The aggregate pc-setspace n :id.Power(pc-space n )

30 PC-Spaces PiMod n :id.Simple( Ÿ n ) pc-space n :id.Syn(PiMod n ) A@pc-space n Ÿn@ŸnŸn@ŸnŸn@ŸnŸn@Ÿn For any address A have canonical actions A  A  Ÿn  ŸnA  A  Ÿn  ŸnA  A  Ÿn  ŸnA  A  Ÿn  ŸnS A@AA@AA@AA@A TTO  =T n M m = e n.m m=1,5,7,11; 48 elements Twelve Tone Operators TTO  =T n M m = e n.m m=1,5,7,11; 48 elements Twelve Tone Operators n = 12 1  e Ÿ 12   Ÿ 12   1 1  e Ÿ 12  TTO  Ÿ 12   1 „Split exact sequence“ Monoid and Group Actions

31 PC-Spaces For a pcset X:0@ pc-setspace 12 (x,y,z,...) have orbit.X = (G-)set class SC have orbit G.X = (G-)set class SC For a pcset X:0@ pc-setspace 12 (x,y,z,...) have orbit.X = (G-)set class SC have orbit G.X = (G-)set class SC A@pc-space n G A@pc-setspace n G induces canonical action G = subgroup of TTO, e.g. G = {tranpositions T n }, {transpositions and inversions T n,T n.I} Classification for more general situations (incl. general addresses): see ToM...!

32 1973 A. Forte (1980 J.Rahn) List of 352 orbits of chords under the translation group T 12 = e Ÿ  and the group TI 12 = e Ÿ . ± 1 of translations and inversions on Ÿ  List of 352 orbits of chords under the translation group T 12 = e Ÿ  and the group TI 12 = e Ÿ . ± 1 of translations and inversions on Ÿ  1978 G. Halsey/E. Hewitt Recursive formula for enumeration of translation orbits of chords in finite abelian groups F Recursive formula for enumeration of translation orbits of chords in finite abelian groups F Enumeration of orbit numbers for chords in cyclic groups Ÿ n, n c 24 Enumeration of orbit numbers for chords in cyclic groups Ÿ n, n c 24 1980 G. Mazzola List of the 158 affine orbits of chords in Ÿ  List of the 158 affine orbits of chords in Ÿ  List of the 26 affine orbits of 3-elt. motives in ( Ÿ   2 and 45 in Ÿ  ¥  Ÿ  List of the 26 affine orbits of 3-elt. motives in ( Ÿ   2 and 45 in Ÿ  ¥  Ÿ  1989 H. Straub /E.Köhler List of the 216 affine orbits of 4-element motives in ( Ÿ   2 1991... H. Fripertinger Enumeration formulas for T n, TI n, and affine chord orbits in Ÿ n, n-phonic k-series, all-interval series, and motives in Ÿ n  ¥  Ÿ m Enumeration formulas for T n, TI n, and affine chord orbits in Ÿ n, n-phonic k-series, all-interval series, and motives in Ÿ n  ¥  Ÿ m Lists of affine motive orbits in ( Ÿ   2 up to 6 elements, explicit formula... Lists of affine motive orbits in ( Ÿ   2 up to 6 elements, explicit formula... PC-Spaces

33 Pitch Class Intervals Ordered pc interval i  a,b  = b-a Unordered pc interval i{a,b} = min(i  a,b , i  b,a  ) ic  k  = {(x,y)  U 12  i  x,y  = k} „i  x,y  is ic  k  “ ic  k  = {(x,y)  U 12  i  x,y  = k} „i  x,y  is ic  k  “ ic{k} = {(x,y)  U 12  i{x,y} = k} „i{x,y} is ic{k}“ ic{k} = {(x,y)  U 12  i{x,y} = k} „i{x,y} is ic{k}“ Ordered pc interval i  a,b  = b-a Unordered pc interval i{a,b} = min(i  a,b , i  b,a  ) ic  k  = {(x,y)  U 12  i  x,y  = k} „i  x,y  is ic  k  “ ic  k  = {(x,y)  U 12  i  x,y  = k} „i  x,y  is ic  k  “ ic{k} = {(x,y)  U 12  i{x,y} = k} „i{x,y} is ic{k}“ ic{k} = {(x,y)  U 12  i{x,y} = k} „i{x,y} is ic{k}“ x:0@ pc-space n (x) pc-space n :id.Syn(PiMod n )

34 PC-Spaces Ordered pc interval i  a,b  = b-a Unordered pc interval i{a,b} = min(i  a,b , i  b,a  ) ic  k  = {(x,y)  U 12  i  x,y  = k} ic  k  = {(x,y)  U 12  i  x,y  = k} ic{k} = {(x,y)  U 12  i{x,y} = k} ic{k} = {(x,y)  U 12  i{x,y} = k} Ordered pc interval i  a,b  = b-a Unordered pc interval i{a,b} = min(i  a,b , i  b,a  ) ic  k  = {(x,y)  U 12  i  x,y  = k} ic  k  = {(x,y)  U 12  i  x,y  = k} ic{k} = {(x,y)  U 12  i{x,y} = k} ic{k} = {(x,y)  U 12  i{x,y} = k} Let A,B:0@ pc-setspace 12 (...) be two pcsets. (Ordered) multiplicity Mult  (A,B,k) = card(A  B  ic  k  ) (Unordered) multiplicity Mult {} (A,B,k) = card(A  B  ic{k}) Clear: Mult {} (A,B,k) = 0 for k > 6 Interval vector IV(A,B) = (Mult  (A,B,k)) k= 0,1,2,...11 Interval class content vector IVC(A,B) = (Mult {} (A,B,k)) k= 0,1,2,...6 Let A,B:0@ pc-setspace 12 (...) be two pcsets. (Ordered) multiplicity Mult  (A,B,k) = card(A  B  ic  k  ) (Unordered) multiplicity Mult {} (A,B,k) = card(A  B  ic{k}) Clear: Mult {} (A,B,k) = 0 for k > 6 Interval vector IV(A,B) = (Mult  (A,B,k)) k= 0,1,2,...11 Interval class content vector IVC(A,B) = (Mult {} (A,B,k)) k= 0,1,2,...6 Interval Vectors

35 PC-Spaces Complement Theorem (for n=12): Let A,B:0@ pc-setspace n (...) be two pcsets and A‘, B‘ their complements in the aggregate U n. Then we have Mult  (A‘, B‘,k) = Mult  (A,B,k) + n - (card(A)+card(B)) (Hexachord Theorem) In particular, if n=2m, and if card(A) = m, a „m-chord“, then Mult  (A‘, A‘,k) = Mult  (A,A,k) Complement Theorem (for n=12): Let A,B:0@ pc-setspace n (...) be two pcsets and A‘, B‘ their complements in the aggregate U n. Then we have Mult  (A‘, B‘,k) = Mult  (A,B,k) + n - (card(A)+card(B)) (Hexachord Theorem) In particular, if n=2m, and if card(A) = m, a „m-chord“, then Mult  (A‘, A‘,k) = Mult  (A,A,k) Lemma: Mult  (B,A,k) = Mult  (A,B,-k) (i)Mult  (B,A,k) = Mult  (A,B,-k) (ii)Mult  (A,B,k) + Mult  (A‘,B,k) = card(B) Proof: Observe that Mult  (A,B,k) = card(e k (A)  B)!

36 PC-Spaces x  TTO  Ÿ 12 @ Ÿ 12 corresponds to x: Ÿ 12 @ pc-space 12 (x) X: Ÿ 12 @ pc-setspace 12 (x,y,z,...) = a set of TTO operators TTO Sets and Strings „Strings of TTO operators“ would be serial motives like above, i.e., ( Ÿ k-1 -addressed) sequences x 0, x 1,...,x k-1 in Ÿ 12 @ pc-space 12 But we have already have „wasted“ the address by Ÿ 12...

37 PC-Spaces If A is an address (a R-module), and F is a form, we have the new form A † @F, the address A killing form, with B@A † @F =(B  A)@F B  A is the affine tensor product. Since 0 R  B =B, we have B  A is the affine tensor product. Since 0 R  B =B, we have 0 R @A † @F = A@F Take Ÿ 12 † @pc-space 12. Then 0 Ÿ @ Ÿ 12 † @pc-space 12 = Ÿ 12 @pc-space 12 0 Ÿ @ Ÿ 12 † @pc-space 12 = Ÿ 12 @pc-space 12 This implies Ÿ k-1 @ Ÿ 12 † @pc-space 12 = ( Ÿ 12 @pc-space 12 ) k A string of TTO operators is a Ÿ k-1 -addressed denotator: Ÿ k-1 @ Ÿ 12 † @pc-space 12 = ( Ÿ 12 @pc-space 12 ) k A string of TTO operators is a Ÿ k-1 -addressed denotator: Ÿ k-1 @ Ÿ 12 † @pc-space 12 = ( Ÿ 12 @pc-space 12 ) k

38 PC-Spaces Two-dimensional arrays = abstract score simulation Rows = voices Columns = measure No duration specified... Two-dimensional arrays = abstract score simulation Rows = voices Columns = measure No duration specified... 45A9 7 design principles: coherence closure saturation hierarchy heterarchy design principles: coherence closure saturation hierarchy heterarchy AST does not have higher-dimensional modules... or global compositions

39 Local Techniques   ‘  –  √  ∂ƒ  ∆  ‘  ∑œ  “  Ÿ  —  ‚  flfi  Œ  ∏ÿ’  ”∞ Y¥≈©√∫~µ«…–¶æ¢¬∆ºª@ƒ∂ßåœ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±yxcvbnm,.- $äölkjhgfdsaqwertzuiopü¨^‘0987654321ŒÁËÈÎÍÙıØ∏ÿ’Æ˘ˆ¯˜·‚‡flfiÅŸ™◊˙˚»÷ —^ � ÚÔÒ\][⁄‹”∞ As¥≈©◊˙ASDFGHJKLéà£_:;MNBVCXYQWERTZUIOPè!?`=)(/&%ç*“ Qyxcvbnm,.-$äölkjhgfdsaqwertzuiopü¨– …«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠≠¿´— ÷»˚˙◊™ŸÅfifl‡‚·˜¯ˆ˘Æ’ÿ∏ØıÙÍÎÈËÁŒ∞”‹⁄[]\ÒÔÚ � ^ Qwertzuiopü¨$äölkjhgfdsayxcvbnm,.-– …«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠¿´´— ÷»˚˙◊™ ŸÅ fifl‡‚·˜¯ˆ˘Æ’ÿ∏ØıÙÍÎÈËÁŒ∞”‹⁄[]\ÒÔÚ � ^ Yxcvbnm,.-$äölkjhgfdsaqwertzuiop– …«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±œ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±Ÿ™◊ ˙˚»÷—Æ˘ˆ¯˜·‚‡flfiÅŒÁËÈÎÍÙıØ∏ÿ’^ � ÚÔÒ\][⁄‹”∞ Asas-.,mnbvcxyasdfghjklööä$¨üpoiuztrewq123¥≈©√∫~µ«…– ¶æ¢¬∆ºª@ƒ∂ßåœ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±Åfifl‡‚·˜¯ˆ˘ÆÿŒÁËÈÎÍÙıØ∏ÿÿ’— ÷»˚˙◊™Ÿ


Download ppt "Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Intégration de la Set Theory américaine (AST)"

Similar presentations


Ads by Google