Download presentation
Presentation is loading. Please wait.
Published byCassandra Atkins Modified over 9 years ago
1
Energy spectra of suprathermal and energetic ions at low solar activity Károly Kecskeméty Wigner Research Centre for Physics, Budapest, Hungary 23rd European Cosmic Ray Symposium, Moscow, 5 July 2012
2
Outline energy spectra suprathermal 100 keV-1 MeV energetic 1-30 MeV variability, quiet-time periods protons, radial variation: Helios, 1 AU, Ulysses, Voyager latitude variation: Ulysses 3 He, heavy nuclei 1-30 MeV/n populations, acceleration mechanisms future prospects
3
measurement: counting rates m,Z,q (E,r,, ,t) f Z,m,q (x, v, t) differential flux phase space density m,Zelemental/isotopic composition qcharge state composition E energy spectrum r, heliocentric radial and latitudinal variation pitch angle distribution/anisotropy t short-term: transients, fluctuations long-term: solar cycle, 22-year Energetic charged particles
4
Cosmic ray energy spectrum
5
Ion populations in the Heliosphere Gloeckler (2008)
6
Fluence spectrum Mewaldt et al. (2007)
7
Variability solar wind proton flux density: 2x10 8 /cm 2 s (high- speed) 4x10 8 /cm 2 s (low- speed, Wang, 2010 ) suprathermals: ~100 1-10 MeV >10 7 100 MeV ~10 3 1 GeV (galactic) factor of <2 ~3 GeV solar/interplanetary activity: fluctuating process high fluxes – localized source, low fluxes - global (Feldman et al, 1978)
8
Gloeckler & Fisk (2006) Variability (100 keV-100 MeV)
9
Questions, problems Does a quiet Sun exist? Which populations are present during quiet times? How their contribution vary throughout the Heliosphere? Do they exhibit a 11/22 year variation? What are the element composition/ionization states? What are the seed populations of energetic particles? What is the source of suprathermal ions: continuous solar emission (micro/nano/pico SEP) or CIRs? Suprathermals at <1 AU? Heavy ion populations at quiet times (suprathermal + energetic) Origin of 3 He (present for extended time periods)
10
Definition: - ”no event” (depends on solar activity) - low particle flux (depends on energy) - low fluctuation level background problem: pulse-height analysis needed difficult at <1 MeV, small geometry factor poor statistics at >1 MeV IMP-8 protons (1-25 MeV) Quiet time periods
11
accelerated solar wind ( suprathermal ions ) SEP event rem nant s micro-/nano-/pico SEP events CIRs / GMIRs (backstreaming at <1 AU) interplanetary shocks turbulence magnetospheric – cometary ions ionized neutrals pick-up anomalous component, TSP Particle sources at quiet times
12
Suprathermal energies ACE, Ulysses: universal spectrum f ~ v -5 J ~ E -1,5 up to ~150 keV particular case of -distribution solar wind plasma: in turbulent quasi- equilibrium Lorentzian -distribution superhalo: Lin (1998) Gloeckler (2003) up to 100 keV/n pickup: comets, dust, outer sources 1 AU Mason & Gloeckler (2011) seed population for energetic particles
13
Very quiet periods Mason & Gloeckler (2011) 1977 2007-09 spectral slope: steepening at >300 keV/n protons -2.7 in 1977 -2.1 in 2007-09 4 He -2.6 in 1977 -2.6 to 2.0 in 2007-09 composition: CIR-like
14
Interplanetary acceleration - models Fisk & Lee (1980): CIR acceleration beyond 1 AU and transport back to 1 AU – shock compression ratio? upstream propagation at 100 keV? Giacalone et al (2002): acceleration in compression regions Fisk & Gloeckler (2006) acceleration from stationary isotropic turbulence reproduces the E -1.5 spectral tail (particular case of - distribution) Drake et al (2010): magnetic reconnection – also E -1.5 Mason & Gloeckler (2011)
15
Spectral minimum: 1-30 MeV (1 AU) large fluctuations background (instrumental, neutrals, high-energy?) small size detectors poor statistics <1 proton/day Logachev et al (2002) fluxes are lower at negative magnetic polarity (qA < 0, 1986) 1996
16
Protons at 1 AU energy spectrum: good fit with sum of two populations J(E) = AE - + CE - solar/heliosphericgalactic spectral parameters obtained from best fits to spectra 1.3 for protons (force-field = 1) Kecskeméty et al (2011) IMP-8 Gomez et al (2000)
17
minimum: SH moves downwards, galactic upwards E min is shifted to lower energies Variation of spe ctral parameters with solar activity IMP-8, Logachev et al. (2002)
18
Observations: use similar instrumentation - semiconductor telescopes 1-30 MeV, same background reduction method (PHA) IMP-8 CPME, EIS, CRNC 1 AU SOHO ERNE, EPHIN 1 AU Helios 1-2 Kiel exp 0.29-0.98 AU Ulysses LET 1.4-5.4 AU, -80 to +80 Voyager 1-2 CRS 1-85 AU, -25 to +30 Radial and latitude variation
19
SOHO ERNE higher background EPHIN: wide-angle vs parallel geometry Valtonen et al (2001) EPHIN
20
A > 0A < 0 SOHO
21
Helios 1974/76-1985 r: 0.29-0.98 CsE Kiel experiment 3.8-27 MeV/n
22
Proton energy spectrum vs radial profile
23
Ulysses 1990-2009 r: 1.4-5.4 CsE inclination 80 LET: 1.8-8.5 MeV PHA
24
Ulysses radial variation radial minimum is observed but in polar region -45 + 30 polar
25
Ulysses latitudinal variation Witcombe et al. (1995)
26
asymmetric pedestal centred at 10 south for both polarities Heliospheric current sheet: shifted southward (Mursula, Hiltula, 2003) streamer belt: shifted towards positive hemisphere (Zieger & Mursula, 1998) Ulysses latitudinal variation 1994-97 + 2006-07
27
Energy spectrum Ulysses energy spectrum A < 0 fluxes lower polar spectrum flat
28
Voyager 1-2 Voyager-1 May 2012: 121 AU (heliopause?)
29
Voyager energy spectrumradial profile
30
Radial profile 0,3-85 AU near-ecliptic fluxes: shallow minimum at 2-5 AU? 5-20 AU higher activity? polar fluxes: constant?
31
Fe suprathermal quiet-time energy spectra Zeldovich et al (poster no 451) ACE ULEIS low-FIP ions: 3 distinct groups Fe charge state: 15-16 SEP remnants? poor statistics (ACE SEPICA, B. Klecker) SEP sw corona
32
3 He, He + nearly absent in solar wind 3 He: extended emission periods (Mason, 2007) 3 He rich events without obvious solar source – flare remnants or reconnection - quiet Sun? Gomez et al (2000)
33
Heavy ions ions with anomalous component also in outer Heliosphere no anomalous component flat: SH + galactic ACE, 1 AU (Reames, 1999)
34
Origin of low-flux ions at 1-30 MeV/n micro-nano-picoflare SEP events (inner Heliosphere, polar regions) SEP fluence distribution E - (Miroshnichenko et al, 2001) 1,0 ( 10 3 pfu) solar flare energy distribution dn/dE = AE - , 1,8 (5 10 19 - 3 10 24 J) Hudson (1991) microflares: 2,3-2,6 (10 27 - 10 19 J) Krucker & Benz (1998) continuation to lower energies? other active structures below flare threshold: X-ray bright points, disappearing ribbons, etc. remnants of earlier large SEP events, CIR post acceleration (streamer belt) anomalous, termination shock particles
35
Large geometry factor, low-background telescopes heavier nuclei <1 AU: Solar Orbiter (0.28 AU, 2017), Solar Probe Plus (0.03 AU, 2018) Solar Sentinels (6 s/c, 4 at 0.25 AU, 2017?) suprathermal spectrum energetic ions: better resolution of small SEPs exploration of 1-20 AU region (near-ecliptic) polar regions <1 AU charge-state measurements at low solar activity Future prospects
36
Thank you for your attention!
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.