Presentation is loading. Please wait.

Presentation is loading. Please wait.

Energy spectra of suprathermal and energetic ions at low solar activity Károly Kecskeméty Wigner Research Centre for Physics, Budapest, Hungary 23rd European.

Similar presentations


Presentation on theme: "Energy spectra of suprathermal and energetic ions at low solar activity Károly Kecskeméty Wigner Research Centre for Physics, Budapest, Hungary 23rd European."— Presentation transcript:

1 Energy spectra of suprathermal and energetic ions at low solar activity Károly Kecskeméty Wigner Research Centre for Physics, Budapest, Hungary 23rd European Cosmic Ray Symposium, Moscow, 5 July 2012

2 Outline energy spectra suprathermal 100 keV-1 MeV energetic 1-30 MeV variability, quiet-time periods protons, radial variation: Helios, 1 AU, Ulysses, Voyager latitude variation: Ulysses 3 He, heavy nuclei 1-30 MeV/n populations, acceleration mechanisms future prospects

3 measurement: counting rates   m,Z,q (E,r,, ,t) f Z,m,q (x, v, t) differential flux phase space density m,Zelemental/isotopic composition qcharge state composition E energy spectrum r, heliocentric radial and latitudinal variation  pitch angle distribution/anisotropy t short-term: transients, fluctuations long-term: solar cycle, 22-year Energetic charged particles

4 Cosmic ray energy spectrum

5 Ion populations in the Heliosphere Gloeckler (2008)

6 Fluence spectrum Mewaldt et al. (2007)

7 Variability solar wind proton flux density: 2x10 8 /cm 2 s (high- speed) 4x10 8 /cm 2 s (low- speed, Wang, 2010 ) suprathermals: ~100 1-10 MeV >10 7 100 MeV ~10 3 1 GeV (galactic) factor of <2 ~3 GeV solar/interplanetary activity: fluctuating process high fluxes – localized source, low fluxes - global (Feldman et al, 1978)

8 Gloeckler & Fisk (2006) Variability (100 keV-100 MeV)

9 Questions, problems Does a quiet Sun exist? Which populations are present during quiet times? How their contribution vary throughout the Heliosphere? Do they exhibit a 11/22 year variation? What are the element composition/ionization states? What are the seed populations of energetic particles? What is the source of suprathermal ions: continuous solar emission (micro/nano/pico SEP) or CIRs? Suprathermals at <1 AU? Heavy ion populations at quiet times (suprathermal + energetic) Origin of 3 He (present for extended time periods)

10 Definition: - ”no event” (depends on solar activity) - low particle flux (depends on energy) - low fluctuation level background problem: pulse-height analysis needed  difficult at <1 MeV, small geometry factor  poor statistics at >1 MeV IMP-8 protons (1-25 MeV) Quiet time periods

11 accelerated solar wind ( suprathermal ions ) SEP event rem nant s micro-/nano-/pico SEP events CIRs / GMIRs (backstreaming at <1 AU) interplanetary shocks turbulence magnetospheric – cometary ions ionized neutrals pick-up anomalous component, TSP Particle sources at quiet times

12 Suprathermal energies ACE, Ulysses: universal spectrum f ~ v -5 J ~ E -1,5 up to ~150 keV particular case of  -distribution solar wind plasma: in turbulent quasi- equilibrium  Lorentzian  -distribution superhalo: Lin (1998) Gloeckler (2003) up to 100 keV/n pickup: comets, dust, outer sources 1 AU Mason & Gloeckler (2011) seed population for energetic particles

13 Very quiet periods Mason & Gloeckler (2011) 1977 2007-09 spectral slope: steepening at >300 keV/n protons -2.7 in 1977 -2.1 in 2007-09 4 He -2.6 in 1977 -2.6 to 2.0 in 2007-09 composition: CIR-like

14 Interplanetary acceleration - models Fisk & Lee (1980): CIR acceleration beyond 1 AU and transport back to 1 AU – shock compression ratio? upstream propagation at 100 keV? Giacalone et al (2002): acceleration in compression regions Fisk & Gloeckler (2006) acceleration from stationary isotropic turbulence reproduces the E -1.5 spectral tail (particular case of  - distribution) Drake et al (2010): magnetic reconnection – also E -1.5 Mason & Gloeckler (2011)

15 Spectral minimum: 1-30 MeV (1 AU) large fluctuations background (instrumental, neutrals, high-energy?) small size detectors  poor statistics <1 proton/day Logachev et al (2002) fluxes are lower at negative magnetic polarity (qA < 0, 1986) 1996

16 Protons at 1 AU energy spectrum: good fit with sum of two populations J(E) = AE -  + CE - solar/heliosphericgalactic spectral parameters obtained from best fits to spectra  1.3 for protons (force-field = 1) Kecskeméty et al (2011) IMP-8 Gomez et al (2000)

17 minimum: SH moves downwards, galactic upwards  E min is shifted to lower energies Variation of spe ctral parameters with solar activity IMP-8, Logachev et al. (2002)

18 Observations: use similar instrumentation - semiconductor telescopes  1-30 MeV, same background reduction method (PHA) IMP-8 CPME, EIS, CRNC 1 AU SOHO ERNE, EPHIN 1 AU Helios 1-2 Kiel exp 0.29-0.98 AU Ulysses LET 1.4-5.4 AU, -80  to +80  Voyager 1-2 CRS 1-85 AU, -25  to +30  Radial and latitude variation

19 SOHO ERNE higher background EPHIN: wide-angle vs parallel geometry Valtonen et al (2001) EPHIN

20 A > 0A < 0 SOHO

21 Helios 1974/76-1985 r: 0.29-0.98 CsE Kiel experiment 3.8-27 MeV/n

22 Proton energy spectrum vs radial profile

23 Ulysses 1990-2009 r: 1.4-5.4 CsE inclination 80  LET: 1.8-8.5 MeV PHA

24 Ulysses radial variation radial minimum is observed but in polar region -45  + 30  polar

25 Ulysses latitudinal variation Witcombe et al. (1995)

26 asymmetric pedestal centred at  10  south for both polarities Heliospheric current sheet: shifted southward (Mursula, Hiltula, 2003) streamer belt: shifted towards positive hemisphere (Zieger & Mursula, 1998) Ulysses latitudinal variation 1994-97 + 2006-07

27 Energy spectrum Ulysses energy spectrum A < 0 fluxes lower polar spectrum flat

28 Voyager 1-2 Voyager-1 May 2012: 121 AU (heliopause?)

29 Voyager energy spectrumradial profile

30 Radial profile 0,3-85 AU near-ecliptic fluxes: shallow minimum at 2-5 AU? 5-20 AU higher activity? polar fluxes: constant?

31 Fe suprathermal quiet-time energy spectra Zeldovich et al (poster no 451) ACE ULEIS low-FIP ions: 3 distinct groups Fe charge state: 15-16 SEP remnants? poor statistics (ACE SEPICA, B. Klecker) SEP sw corona

32 3 He, He + nearly absent in solar wind 3 He: extended emission periods (Mason, 2007) 3 He rich events without obvious solar source – flare remnants or reconnection - quiet Sun? Gomez et al (2000)

33 Heavy ions ions with anomalous component also in outer Heliosphere no anomalous component flat: SH + galactic ACE, 1 AU (Reames, 1999)

34 Origin of low-flux ions at 1-30 MeV/n micro-nano-picoflare SEP events (inner Heliosphere, polar regions) SEP fluence distribution E -  (Miroshnichenko et al, 2001)   1,0 ( 10 3 pfu) solar flare energy distribution dn/dE = AE - ,   1,8 (5  10 19 - 3  10 24 J) Hudson (1991) microflares:   2,3-2,6 (10 27 - 10 19 J) Krucker & Benz (1998) continuation to lower energies? other active structures below flare threshold: X-ray bright points, disappearing ribbons, etc. remnants of earlier large SEP events, CIR post acceleration (streamer belt) anomalous, termination shock particles

35 Large geometry factor, low-background telescopes  heavier nuclei <1 AU: Solar Orbiter (0.28 AU, 2017), Solar Probe Plus (0.03 AU, 2018) Solar Sentinels (6 s/c, 4 at 0.25 AU, 2017?) suprathermal spectrum energetic ions: better resolution of small SEPs exploration of 1-20 AU region (near-ecliptic) polar regions <1 AU charge-state measurements at low solar activity Future prospects

36 Thank you for your attention!


Download ppt "Energy spectra of suprathermal and energetic ions at low solar activity Károly Kecskeméty Wigner Research Centre for Physics, Budapest, Hungary 23rd European."

Similar presentations


Ads by Google