# Quantum Model of the Atom (p. 138-141) Read the text first Ch. 6.3 – Quantum Numbers.

## Presentation on theme: "Quantum Model of the Atom (p. 138-141) Read the text first Ch. 6.3 – Quantum Numbers."— Presentation transcript:

Quantum Model of the Atom (p. 138-141) Read the text first Ch. 6.3 – Quantum Numbers

Extra information for interested students zLouis de Broglie (1924) yApplied wave-particle theory to e - ye - exhibit wave properties QUANTIZED WAVELENGTHS

A. Electrons as Waves QUANTIZED WAVELENGTHS

A. Electrons as Waves EVIDENCE: DIFFRACTION PATTERNS ELECTRONS VISIBLE LIGHT

Quantum Mechanics zHeisenberg Uncertainty Principle yImpossible to know both the velocity and position of an electron at the same time

B. Quantum Mechanics zSchrödinger Wave Equation (1926) yfinite # of solutions  quantized energy levels ydefines probability of finding an e - Take it easy, do not get shocked, we will cover this in Chemy 333, if you are a chemistry major student

B. Quantum Mechanics Radial Distribution Curve Orbital zOrbital (“electron cloud”) yRegion in space where there is 90% probability of finding an e -

C. Quantum Numbers UPPER LEVEL zFour Quantum Numbers: ySpecify the “address” of each electron in an atom

C. Quantum Numbers 1. Principal Quantum Number ( n ) yEnergy level ySize of the orbital yn 2 = # of orbitals in the energy level

C. Quantum Numbers s p d f 2. Angular Momentum Quantum # ( l ) yEnergy sublevel yShape of the orbital

C. Quantum Numbers zn=# of sublevels per level zn 2 =# of orbitals per level zSublevel sets: 1 s, 3 p, 5 d, 7 f

C. Quantum Numbers 3. Magnetic Quantum Number ( m l ) yOrientation of orbital  Specifies the exact orbital within each sublevel

C. Quantum Numbers pxpx pypy pzpz

zOrbitals combine to form a spherical shape. 2s 2p z 2p y 2p x

C. Quantum Numbers 4. Spin Quantum Number ( m s ) yElectron spin  +½ or -½ yAn orbital can hold 2 electrons that spin in opposite directions.

C. Quantum Numbers 1. Principal #  2. Ang. Mom. #  3. Magnetic #  4. Spin #  energy level sublevel (s,p,d,f) orbital electron zPauli Exclusion Principle yNo two electrons in an atom can have the same 4 quantum numbers. yEach e - has a unique “address”: