Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prime Numbers With Mrs Ford. Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was the librarian at Alexandria, Egypt in 200 B.C. Note every book was.

Similar presentations


Presentation on theme: "Prime Numbers With Mrs Ford. Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was the librarian at Alexandria, Egypt in 200 B.C. Note every book was."— Presentation transcript:

1 Prime Numbers With Mrs Ford

2 Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was the librarian at Alexandria, Egypt in 200 B.C. Note every book was a scroll.

3 Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was a Greek mathematician, astronomer, and geographer. He invented a method for finding prime numbers that is still used today. This method is called Eratosthenes’ Sieve.

4 Eratosthenes’ Sieve  A  A sieve has holes in it and is used to filter out the juice.  Eratosthenes’s  Eratosthenes’s sieve filters out numbers to find the prime numbers.

5 Definition Definition  Factor Factor – a number that is multiplied by another to give a product. 7 x 8 = 56 Factors

6 Definition  Factor Factor – a number that divides evenly into another. 56 ÷ 8 = 7 Factor

7 Definition Prime Number Number – a number that has only two factors, itself and 1. 7 7 is prime because the only numbers that will divide into it evenly are 1 and 7.

8 Hundreds Chart  On  On graph paper, make a chart of the numbers from 1 to 100, with 10 numbers in each row.

9 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 Hundreds Chart

10 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 1 – Cross out 1; it is not prime.

11 Hint For Next Step Remember all numbers divisible by 2 are even numbers.

12 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 2 – Leave 2; cross out multiples of 2

13 Hint For Next Step  To  To find multiples of 3, add the digits of a number; see if you can divide this number evenly by 3; then the number is a multiple of 3. 2 6 7 Total of digits = 15 3 divides evenly into 15 267 is a multiple of 3

14 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 3– Leave 3; cross out multiples of 3

15  To  To find the multiples of 5 look for numbers that end with the digit 0 and 5. Hint For the Next Step 385 is a multiple of 5 & 890 is a multiple of 5 because the last digit ends with 0 or 5.

16 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 4– Leave 5; cross out multiples of 5

17 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 5– Leave 7; cross out multiples of 7

18 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 6–Leave 11; cross out multiples of 11

19 12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 All the numbers left are prime

20 The Prime Numbers from 1 to 100 are as follows: 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

21 THE END


Download ppt "Prime Numbers With Mrs Ford. Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was the librarian at Alexandria, Egypt in 200 B.C. Note every book was."

Similar presentations


Ads by Google