Presentation is loading. Please wait.

Presentation is loading. Please wait.

Black hole information paradox and Bogoliubov quantum gravity kinetic equations Igor V. Volovich Steklov Mathematical Institute, Moscow ROUND TABLE

Similar presentations


Presentation on theme: "Black hole information paradox and Bogoliubov quantum gravity kinetic equations Igor V. Volovich Steklov Mathematical Institute, Moscow ROUND TABLE"— Presentation transcript:

1 Black hole information paradox and Bogoliubov quantum gravity kinetic equations Igor V. Volovich Steklov Mathematical Institute, Moscow ROUND TABLE ITALY-RUSSIA@DUBNA Black Holes in Mathematics and Physics Dubna, December 15 -- 18, 2011

2 Black Hole Information Paradox Time Irreversibility Problem (BH&BB) Functional Formulation of Classical Mechanics and Field Theory QG Boltzmann and Bogoliubov Equations

3 Black hole entropy Bekenstein-Hawking: Hawking radiation and Bogoliubov transformation

4 Do Black Holes Really Exist? Infinite time to form a black hole in Schwarzshild coordinates?

5 Black hole information paradox In 1976 Hawking has argued that the black hole creation and evaporation could lead to an evolution of a pure state into a mixed state. This is in contradiction with the rules of quantum mechanics. This has become known as the black hole information loss problem.

6 Hawking first argument If the material entering the black hole were a pure quantum state, the transformation of that state into the mixed state of Hawking radiation would destroy information about the original quantum state.

7 `t Hooft, Susskind, Hawking… Quantum gravity, baby universes, AdS/CFT,… 1976: Information loss 2005: No information loss In 2005 Hawking has suggested that there is no information loss in black holes in asymptotically AdS (anti-de Sitter) spacetimes.

8 Hawking second argument The central point in his argument is the assertion that there is no information loss if one has a unitary evolution. Then, since the AdS quantum gravity is dual to a unitary conformal field theory (AdS/CFT duality) there should be no information loss.

9 Time Irreversibility problem An important point in the argument is the assertion that, if one considers a theory with a unitary dynamics, there is no information loss problem. We remind that the problem of how a unitary reversible dynamics can lead to an irreversible behavior (i.e. to information loss) is a famous fundamental problem in statistical physics.

10 Time Irreversibility Problem We consider the black hole information problem as a particular example of the fundamental irreversibility problem in statistical physics. Black hole vs. Black body.

11 Time Irreversibility Problem Non-Newtonian Classical Mechanics Functional Probabilistic General Relativity I. V. Found. Phys. (2011). I.V. Theor. Math. Phys (2010)

12 Time Irreversibility Problem The time irreversibility problem is the problem of how to explain the irreversible behaviour of macroscopic systems from the time-symmetric microscopic laws: Newton, Schrodinger Eqs –- reversible Navier-Stokes, Boltzmann, diffusion, Entropy increasing --- irreversible

13 Time Irreversibility Problem Boltzmann, Maxwell, Poincar´e, Bogolyubov, Kolmogorov, von Neumann, Landau, Prigogine, Feynman, Kozlov,… Poincar´e, Landau, Prigogine, Ginzburg, Feynman: Problem is open. We will never solve it (Poincare) Quantum measurement? (Landau) Lebowitz, Goldstein, Bricmont: Problem was solved by Boltzmann I.Volovich

14 Boltzmann`s answers to: Loschmidt: statistical viewpoint Poincare—Zermelo: extremely long Poincare recurrence time Coarse graining Not convincing…

15 Ergodicity Boltzmann, Poincare, Hopf, Kolmogorov, Anosov, Arnold, Sinai,…: Ergodicity, mixing,… for various important deterministic mechanical and geometrical dynamical systems

16 Bogolyubov method 1. Newton to Liouville Eq. Bogolyubov (BBGKI) hierarchy 2. Thermodynamic limit (infinite number of particles) 3. The condition of weakening of initial correlations between particles in the distant past 4. Functional conjecture 5. Expansion in powers of density Divergences.

17 Why Newton`s mechanics can not be true? Newton`s equations of motions use real numbers while one can observe only rationals. (s.i.) Classical uncertainty relations Time irreversibility problem Singularities in general relativity

18 Classical Uncertainty Relations

19 Newton Equation Phase space (q,p), Hamilton dynamical flow

20 Newton`s Classical Mechanics Motion of a point body is described by the trajectory in the phase space. Solutions of the equations of Newton or Hamilton. Idealization: Arbitrary real numbers—non observable. Newton`s mechanics deals with non-observable (non-physical) quantities.

21 Real Numbers A real number is an infinite series, which is unphysical:

22 Try to solve these problems by developing a new, non-Newtonian mechanics. And new, non-Einsteinian general relativity

23 We attempt the following solution of the irreversibility problem: a formulation of microscopic dynamics which is irreversible in time: Non-Newtonian Functional Approach.

24 Functional formulation of classical mechanics Here the physical meaning is attributed not to an individual trajectory but only to a bunch of trajectories or to the distribution function on the phase space. The fundamental equation of the microscopic dynamics in the proposed "functional" approach is not the Newton equation but the Liouville or Fokker-Planck-Kolmogorov (Langevin, Smoluchowski) equation for the distribution function of the single particle..

25 States and Observables in Functional Classical Mechanics

26 Not a generalized function

27 Fundamental Equation in Functional Classical Mechanics Looks like the Liouville equation which is used in statistical physics to describe a gas of particles but here we use it to describe a single particle.(moon,…) Instead of Newton equation. No trajectories!

28 Cauchy Problem for Free Particle Poincare, Langevin, Smolukhowsky, Krylov, Bogoliubov, Blokhintsev, Born,…

29 Free Motion

30 Delocalization

31 Newton`s Equation for Average

32 Comparison with Quantum Mechanics

33 Liouville and Newton. Characteristics

34 Corrections to Newton`s Equations Non-Newtonian Mechanics

35 Corrections to Newton`s Equations

36

37 Corrections

38 The Newton equation in this approach appears as an approximate equation describing the dynamics of the expected value of the position and momenta for not too large time intervals. Corrections to the Newton equation are computed. _____________________________

39 Fokker-Planck-Kolmogorov versus Newton

40 Boltzmann and Bogolyubov Equations A method for obtaining kinetic equations from the Newton equations of mechanics was proposed by Bogoliubov. This method has the following basic stages: Liouville equation for the distribution function of particles in a finite volume, derive a chain of equations for the distribution functions, pass to the infinite-volume, infinite number of particles limit, postulate that the initial correlations between the particles were weaker in the remote past, introduce the hypothesis that all many-particle distribution functions depend on time only via the one-particle distribution function, and use the formal expansion in power series in the density. Non-Newtonian Functional Mechanics: Finite volume. Two particles.

41 Liouville equation for two particles

42 Two particles in finite volume

43 If satisfies the Liouville equation then obeys to the following equation Bogolyubov type equation for two particles in finite volume

44 Kinetic theory for two particles Hydrodynamics for two particles?

45 No classical determinism Classical randomness World is probabilistic (classical and quantum) Compare: Bohr, Heisenberg, von Neumann, Einstein,…

46 Single particle (moon,…)

47 Newton`s approach: Empty space (vacuum) and point particles. Reductionism: For physics, biology economy, politics (freedom, liberty,…) This approach: No empty space. Probability distribution. Collective phenomena. Subjective.

48 Fixed classical spacetime? A fixed classical background spacetime does not exists (Kaluza—Klein, Strings, Branes). No black hole metric. There is a set of classical universes and a probability distribution which satisfies the Liouville equation (not Wheeler—De Witt). Stochastic inflation?

49 Functional General Relativity Fixed background. Geodesics in functional mechanics Probability distributions of spacetimes No fixed classical background spacetime. No Penrose—Hawking singularity theorems Stochastic geometry? Stochastic BH?

50 Quantum gravity. Superstrings The sum over manifolds is not defined. Algorithmically unsolved problem.

51 Example

52 Fixed classical spacetime? A fixed classical background spacetime does not exists (Kaluza—Klein, Strings, Branes). There is a set of classical universes and a probability distribution which satisfies the Liouville equation (not Wheeler—De Witt). Stochastic inflation?

53 Quantum gravity Bogoliubov Correlation Functions Use Wheeler – de Witt formulation for QG. Density operator of the universe on Correlation functions

54 Factorization Th.M. NieuwenhuizenTh.M. Nieuwenhuizen, I.V. (2005)I.V.

55 QG Bogoliubov-Boltzmann Eqs

56 Conclusions BH and BB information loss (irreversibility) problem Functional formulation (non-Newtonian) of classical mechanics: distribution function instead of individual trajectories. Fundamental equation: Liouville or FPK for a single particle. Newton equation—approximate for average values. Corrections to Newton`s trajectories. Stochastic general relativity. BH information problem. QG Bogoliubov-Boltzmann equations.

57 Thank You!

58 Information Loss in Black Holes Hawking paradox. Particular case of the Irreversibility problem. Bogolyubov method of derivation of kinetic equations -- to quantum gravity. Th.M. Nieuwenhuizen, I.V. (2005)Th.M. NieuwenhuizenI.V.


Download ppt "Black hole information paradox and Bogoliubov quantum gravity kinetic equations Igor V. Volovich Steklov Mathematical Institute, Moscow ROUND TABLE"

Similar presentations


Ads by Google