# Properties.

## Presentation on theme: "Properties."— Presentation transcript:

Properties

Properties (Answers) Commutative Property Associative Property
Distributive Property Additive Identity Additive Inverse Multiplicative Identity Multiplicative Inverse Substitution Symmetric Equality Transitive Equality Addition Property of Equality Multiplication Property of Equality Zero Product Property

Hr. 6: 3 * 1 = 3 1 * 5 = 5 Hr. 7: 7 * 1 = 7 1 * 6 = 6

5B - B = 4B Replace B with Bananas
(So this means: Eat 1 Banana out of a bunch of 5 Bananas and 4 Bananas are left.)

Hr. 6: If x = 7, then 5x = 35 If x = 8, then 6x = 48 Hr. 7: x = p, then 2x = 2p ab = c, then (a)ab = ac ab = c, then 8ab = 8c

Hr. 6: 3(X + 1) = 3x + 3 7(X + 2) = 7x + 14 Hr. 7 : 4(X - 7) = 4x - 28 Hr. 7 4(B + -2) = 4B - 8

Hr. 6: F(a) = a + 1. F(2) = 3 Hr. 7 : y = 1 + a, when a = 2, y = 3
Y = 22 +X. When X = 4, then Y = 26. F(a) = a F(2) = 3 Hr. 7 : y = 1 + a, when a = 2, y = 3 Hr. 7 f(x) = 8x, then f(1) = 8

Hr. 6: 3 + 0 = 3 = 37 Hr. 7: 4 + 0 = 4 6 + 0 = 6

Hr. 7: Hr. 6: 3 = x, then 9 = x + 6 if x = 1, then x + 8 = 9
x = q, then x + 1 = q + 1 X = 3, then x + 5 = 8

Hr. 6: 5P = 0, then P = 0 If A(J+1) = 0, then A = 0 or (J+1) = 0 Hr. 7: 4X = 0, then X =0 6Y = 0, then Y =0 AB = 0, then either A = 0 or B = 0

Hr. 6: If a = b and b = d, then a = d x = y and y = z, so x = z Hr. 7: If x = 2 and 2 = y, then x = y Hr. 7 If x = k and k = y, then x = y If 1+4 = 5 and 5 = 3 + 2, then = 3 + 2

Hr. 6: 63 * 1/63 = 1 3/7 * 7/3 = 1 Hr. 7 7 * 1/7 = 1 4/7 * 7/4 = 1

Hr. 6: 6 + 4 = 4 + 6 A + B + C = B + C +A Hr. 7: 9 + 2 = 2 + 9 1+2+3 = 2+1+3

Hr. 6: If 93 = a, then a = 93 If x + 4 = y, then f(x) = x + 4 Hr. 7 If 8 = x, then x =8 If x + 7 = y, then y = x + 7

Hr. 6: 6 + 4 = 4 + 6 A + B + C = B + C +A Hr. 7: 9 + 2 = 2 + 9 1+2+3 = 2+1+3

Hr. 6: = 0 5 - 5 = 0 Hr. 7 : = 0 Hr. 7 = 0

Properties Examples Block 6/7 2011

Properties (Answers) Commutative Property Associative Property
Distributive Property Additive Identity Additive Inverse Multiplicative Identity Multiplicative Inverse Substitution Symmetric Equality Transitive Equality Addition Property of Equality Multiplication Property of Equality Zero Product Property Game 1

Hr. 7 7 * 1/7 = 1 .

Answer a different property than Substitution.
Hr. 6: If x = 8, then 6x = 48 Answer a different property than Substitution. .

Hr. 7: 6Y = 0, then Y =0 .

Hr. 6: 3 + 0 = 3 .

Hr. 7 = 0 .

Hr. 7: (2 + 3) + 5 = 2 + (3 + 5)

Hr. 7 4(B + -2) = 4B - 8 .

Answer a different property than Substitution.
Hr. 6: if x = 1, then x + 8 = 9 Answer a different property than Substitution. .

Hr. 7: 7 * 1 = 7 .

Hr. 7: 1+2+3 = 2+1+3

Hr. 6: If a = b and b = d, then a = d .

Hr. 7 If 8 = x, then x =8 .

Hr. 7 f(x) = 8x, then f(1) = 8 .

Properties (Answers) Commutative Property Associative Property
Distributive Property Additive Identity Additive Inverse Multiplicative Identity Multiplicative Inverse Substitution Symmetric Equality Transitive Equality Addition Property of Equality Multiplication Property of Equality Zero Product Property Game 2

Hr. 6: 3 = x, then 9 = x + 6 Not Substitution .

9 + 2 = 2 + 9 Hr. 7:

Hr. 6: = 37 .

Hr. 7: If x = 2 and 2 = y, then x = y .

Hr. 7: ab = c, then 8ab = 8c .

Hr. 7 : y = 1 + a, when a = 2, y = 3 .

Hr. 7 If x + 7 = y, then y = x + 7 .

Hr. 7 : = 0 .

Hr. 7 : 4(X - 7) = 4x - 28 .

Hr. 6: 1 * 5 = 5 .

5B - B = 4B Replace B with Bananas.
(So this means: Eat 1 Banana out of a bunch of 5 Bananas and 4 Bananas are left.)

Hr. 7: (a + b) + c + d = a + b + (c + d)

Hr. 6: 3/7 * 7/3 = 1 .

If A(J+1) = 0, then A = 0 or (J+1) = 0
Hr. 6: If A(J+1) = 0, then A = 0 or (J+1) = 0 .

Properties (Answers) Commutative Property Associative Property
Distributive Property Additive Identity Additive Inverse Multiplicative Identity Multiplicative Inverse Substitution Symmetric Equality Transitive Equality Addition Property of Equality Multiplication Property of Equality Zero Product Property Game 3

Hr. 6: (3 x 4) x 2 = 3 x (4 x 2)

Hr. 6: 3 * 1 = 3 .

Hr. 6: F(a) = a F(2) = 3 .

Hr. 6: If x + 4 = y, then f(x) = x + 4 .

Hr. 7: x = q, then x + 1 = q + 1 .

Hr. 6: x = y and y = z, so x = z .

Hr. 7: AB = 0, then either A = 0 or B = 0 .

Hr. 6: 5 - 5 = 0 .

Hr. 6: 7(X + 2) = 7x + 14 .

Hr. 7 4/7 * 7/4 = 1 .

Hr. 7: x = p, then 2x = 2p .

Hr. 7: 4 + 0 = 4 .

Hr. 6: A + B + C = B + C +A

Properties (Answers) Commutative Property Associative Property
Distributive Property Additive Identity Additive Inverse Multiplicative Identity Multiplicative Inverse Substitution Symmetric Equality Transitive Equality Addition Property of Equality Multiplication Property of Equality Zero Product Property Game 4

Hr. 7: 1 * 6 = 6 .

Hr. 6: = 0 . .

Hr. 6: If 93 = a, then a = 93 .

Hr. 6: If x = 7, then 5x = 35 NOT SUBSTITUTION .

Hr. 6: 6 + 4 = 4 + 6

Hr. 7: X = 3, then x + 5 = 8 .

Hr. 6: 9 + (3 + 8) = (9 + 3) + 8

Hr. 7 If x = k and k = y, then x = y .

Hr. 7: ab = c, then (a)ab = ac .

Hr. 6: 5P = 0, then P = 0 .

Hr. 6: 3(X + 1) = 3x + 3 .

Hr. 6: 63 * 1/63 = 1 .

Hr. 6: Y = 22 +X. When X = 4, then Y = 26. . .

Hr. 7 If 1+4 = 5 and 5 = 3 + 2, then = 3 + 2 .

Hr. 7: 6 + 0 = 6 .

Hr. 7: 4X = 0, then X =0 .