Download presentation

Presentation is loading. Please wait.

Published byAldous Marsh Modified over 5 years ago

1
Integration by Substitution

2
The chain rule allows us to differentiate a wide variety of functions, but we are able to find antiderivatives for only a limited range of functions? We can sometimes use substitution or change of variable to rewrite functions in a form that we can integrate.

3
Example 1: The variable of integration must match the variable in the expression. Don’t forget to substitute the value for u back into the problem!

4
Example 2: One of the clues that we look for is if we can find a function and its derivative in the integral. The derivative of is.Note that this only worked because of the 2x in the original. Many integrals can not be done by substitution.

5
Example 3: Solve for dx.

6
Example 4:

7
Example 5: We solve for because we can find it in the integral.

8
Example 6:

9
Example 7: The technique is a little different for definite integrals. We can find new limits, and then we don’t have to substitute back. new limit We could have substituted back and used the original limits.

10
Example 7 continued: Wrong! The limits don’t match! Using the original limits: Leave the limits out until you substitute back. This is usually more work than finding new limits

11
Example 8: Don’t forget to use the new limits.

12
Acknowledgement I wish to thank Greg Kelly from Hanford High School, Richland, USA for his hard work in creating this PowerPoint. http://online.math.uh.edu/ Greg has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. www.mathxtc.com Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google