Presentation is loading. Please wait.

Presentation is loading. Please wait.

Volume computation László Lovász Microsoft Research

Similar presentations


Presentation on theme: "Volume computation László Lovász Microsoft Research"— Presentation transcript:

1 Volume computation László Lovász Microsoft Research lovasz@microsoft.com

2 Volume computation Given:, convex Want: volume of K by a membership oracle; with relative error ε Not possible in polynomial time, even if ε=n cn. in n, 1/ε and log R Elekes, Bárány, Füredi

3 Dyer-Frieze-Kannan 1989 But if we allow randomization: There is a polynomial time randomized algorithm that computes the volume of a convex body with high probability with arbitrarily small relative error

4 Why not just.... * * * * * * * * * * ** * * * * * * S Need exponential size S before nonzero!

5

6 Can use Monte-Carlo! But... Now we have to generate random points from K i+1.

7 Do sufficiently long random walk on centers of cubes in K Construct sufficiently dense lattice Pick random point p from little cube If p is outside K, abort; else return p

8 - How dense should be the lattice? - Where to start the walk? - How long to walk? - How many trials will be aborted? - How close will be the returned point to random? “warm start”: use the points you already have infinitely... mixing time > bottleneck > isoperimetric inequality “rounding”: preprocessing by affine transformation mixing time + small isolated parts Issues

9 bottleneck isoperimetric quantity Conductance

10 General mixing time bound starting density Jerrum - Sinclair Mixing time is >1/φ but < (log M)/φ 2.

11 - make boundary small (sandwiching) bottleneck isolated cube The problem with the boundary - make boundary smoother - re-define conductance by excluding small sets - walk on all points - separate global and local conductance - start far from trouble

12 Dyer-Frieze-Kannan 1989 multi-Phase Monte-Carlo (product estimator) Markov chain sampling isoperimetric inequalities Polynomial time! Cost of volume computation (number of oracle calls) Amortized cost of sample point Cost of sample point

13 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 isoperimetric inequalities via Localization Lemma, exceptional small sets, warm start: start from random point from a distribution already close to uniform > start far from trouble > avoid start penalty Bootstrapping: re-using points from previous phase as starting points

14 Isoperimetric Inequality

15 infinitesimally narrow truncated cone Localization Lemma

16 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 integration of logconcave functions, isoperimetric inequality for logconcave functions, Metropolis algorithm, better sandwiching

17 The Metropolis algorithm Given: time-reversible Markov chain M on V with stationary distribution  ; Want: Sample from distribution with density proportional to F. Modified Markov chain M’: - generate step i  j - if F(j)  F(i), make step; - if F(j)≤F(i), make step with probability F(j)/F(i), else stay where you are. M’ is time-reversible, and its density is proportional to F.

18 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 ball walk

19 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 Dyer-Frieze 1991 independence of errors

20 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 Dyer-Frieze 1991 Lovász-Simonovits 1992,93 integration of smoother functions randomized preprocessing generalization of multi-phase Monte-Carlo to simulated annealing scheme

21 Want: Random walk on K “Simulated annealing” for integration

22 X : sample from  k,

23 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 Dyer-Frieze 1991 Lovász-Simonovits 1992,93 Kannan-Lovász-Simonovits 1997 isotropic positition local and global obstructions (speedy walk) bootstrapping preprocessing and sampling

24 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 Dyer-Frieze 1991 Lovász-Simonovits 1992,93 Kannan-Lovász-Simonovits 1997 Lovász 1999 analysis of the hit-and-run algorithm

25 Smith 1984 Hit-and-run walk

26 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 Dyer-Frieze 1991 Lovász-Simonovits 1992,93 Kannan-Lovász-Simonovits 1997 Lovász 1999 Kannan-Lovász 1999 average conductance, log-Cheeger inequality

27 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 Dyer-Frieze 1991 Lovász-Simonovits 1992,93 Kannan-Lovász-Simonovits 1997 Lovász 1999 Kannan-Lovász 1999 Lovász-Vempala 2002 sampling from general logconcave distributions, ball walk and hit-and-run walk

28 Dyer-Frieze-Kannan 1989 Lovász-Simonovits 1990 Applegate-Kannan 1990 Lovász 1991 Dyer-Frieze 1991 Lovász-Simonovits 1992,93 Kannan-Lovász-Simonovits 1997 Lovász 1999 Kannan-Lovász 1999 Lovász-Vempala 2002 A.Kalai-Lovász-Vempala 2003 Simulated annealing

29 The pencil construction 0 2R2R

30

31

32 Two possibilities for further improvement: - The Slicing Conjecture - Reflecting walk

33 The Slicing Conjecture Smallest bisecting surface F H Smallest bisecting hyperplane ? ?

34 Reflecting random walk in K steplength h large How fast does this mix? Stationary distribution: uniform Chain is time-reversible e.g. exponentially distributed with expectation  diam(K).


Download ppt "Volume computation László Lovász Microsoft Research"

Similar presentations


Ads by Google