Presentation is loading. Please wait.

Presentation is loading. Please wait.

Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department.

Similar presentations


Presentation on theme: "Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department."— Presentation transcript:

1 Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department Carnegie-Mellon University Katarína Cechlárová Institute of Mathematics PJ Safárik University in Košice Kurt Mehlhorn Max-Planck-Institut fűr Informatik Saarbrűcken Supported by Royal Society of Edinburgh/Scottish Executive Personal Research Fellowship and Engineering and Physical Sciences Research Council grant GR/R84597/01

2 2 House Allocation problem (HA) Set of agents A={a 1, a 2, …, a r } Set of houses H={h 1, h 2, …, h s } Each agent a i has an acceptable set of houses A i  H a i ranks A i in strict order of preference Example: a 1 : h 2 h 1 a 2 : h 3 h 4 h 2 a 3 : h 4 h 3 a 4 : h 1 h 4 Let n = r + s and let m =total length of preference lists  a 1 finds h 1 and h 2 acceptable a 3 prefers h 4 to h 3

3 3 Applications House allocation context: Large-scale residence exchange in Chinese housing markets Yuan, 1996 Allocation of campus housing in American universities, such as Carnegie-Mellon, Rochester and Stanford Abdulkadiroğlu and Sönmez, 1998 Other matching problems: US Naval Academy: students to naval officer positions Roth and Sotomayor, 1990 Scottish Executive Teacher Induction Scheme Assigning students to projects

4 4 The underlying graph Weighted bipartite graph G=(V,E) Vertex set V=A  H Edge set: { a i, h j }  E if and only if a i finds h j acceptable Weight of edge { a i, h j } is rank of h j in a i ’s preference list Example a 1 : h 2 h 1 a 2 : h 3 h 4 h 2 a 3 : h 4 h 3 a 4 : h 1 h 4 a1a1 a2a2 a3a3 a4a4 h1h1 h2h2 h3h3 h4h4     2 1 1 2 3 2 1 1 2

5 5 The underlying graph Weighted bipartite graph G=(V,E) Vertex set V=A  H Edge set: { a i, h j }  E if and only if a i finds h j acceptable Weight of edge { a i, h j } is rank of h j in a i ’s preference list Example a 1 : h 2 h 1 a 2 : h 3 h 4 h 2 a 3 : h 4 h 3 a 4 : h 1 h 4 a1a1 a2a2 a3a3 a4a4 h1h1 h2h2 h3h3 h4h4     2 1 1 2 3 2 1 1 2 M={(a 1, h 1 ), (a 2, h 4 ), (a 3, h 3 )} M(a 1 )=h 1

6 6 The underlying graph Weighted bipartite graph G=(V,E) Vertex set V=A  H Edge set: { a i, h j }  E if and only if a i finds h j acceptable Weight of edge { a i, h j } is rank of h j in a i ’s preference list Example a 1 : h 2 h 1 a 2 : h 3 h 4 h 2 a 3 : h 4 h 3 a 4 : h 1 h 4 a1a1 a2a2 a3a3 a4a4 h1h1 h2h2 h3h3 h4h4     2 1 1 2 3 2 1 1 2 M={(a 1, h 2 ), (a 2, h 3 ), (a 3, h 4 ), (a 4, h 1 )}

7 7 Pareto optimal matchings A matching M 1 is Pareto optimal if there is no matching M 2 such that: 1. Some agent is better off in M 2 than in M 1 2. No agent is worse off in M 2 than in M 1 Example M 1 is not Pareto optimal since a 1 and a 2 could swap houses – each would be better off M 2 is Pareto optimal a 1 : h 2 h 1 a 2 : h 1 h 2 a 3 : h 3 a 1 : h 2 h 1 a 2 : h 1 h 2 a 3 : h 3 M1M1 M2M2

8 8 Testing for Pareto optimality A matching M is maximal if there is no agent a and house h, each unmatched in M, such that a finds h acceptable A matching M is trade-in-free if there is no matched agent a and unmatched house h such that a prefers h to M(a) A matching M is coalition-free if there is no coalition, i.e. a sequence of matched agents  a 0,a 1,…,a r-1  such that a i prefers M(a i ) to M(a i+1 ) (0  i  r-1) a 1 : h 2 h 1 a 2 : h 3 h 4 h 2 a 3 : h 4 h 3 a 4 : h 1 h 4 Proposition: M is Pareto optimal if and only if M is maximal, trade-in-free and coalition-free M is not maximal due to a 3 and h 3

9 9 Testing for Pareto optimality A matching M is maximal if there is no agent a and house h, each unmatched in M, such that a finds h acceptable A matching M is trade-in-free if there is no matched agent a and unmatched house h such that a prefers h to M(a) A matching M is coalition-free if there is no coalition, i.e. a sequence of matched agents  a 0,a 1,…,a r-1  such that a i prefers M(a i ) to M(a i+1 ) (0  i  r-1) a 1 : h 2 h 1 a 2 : h 3 h 4 h 2 a 3 : h 4 h 3 a 4 : h 1 h 4 Proposition: M is Pareto optimal if and only if M is maximal, trade-in-free and coalition-free M is not trade-in-free due to a 2 and h 3

10 10 Testing for Pareto optimality A matching M is maximal if there is no agent a and house h, each unmatched in M, such that a finds h acceptable A matching M is trade-in-free if there is no matched agent a and unmatched house h such that a prefers h to M(a) A matching M is coalition-free if there is no coalition, i.e. a sequence of matched agents  a 0,a 1,…,a r-1  such that a i prefers M(a i+1 ) to M(a i ) (0  i  r-1) a 1 : h 2 h 1 a 2 : h 3 h 4 h 2 a 3 : h 4 h 3 a 4 : h 1 h 4 Proposition: M is Pareto optimal if and only if M is maximal, trade-in-free and coalition-free M is not coalition-free due to  a 1, a 2, a 4  a1a1 a3a3 a4a4 h1h1 h3h3 h4h4 a2a2 h2h2

11 11 Testing for Pareto optimality A matching M is maximal if there is no agent a and house h, each unmatched in M, such that a finds h acceptable A matching M is trade-in-free if there is no matched agent a and unmatched house h such that a prefers h to M(a) A matching M is coalition-free if there is no coalition, i.e. a sequence of matched agents  a 0,a 1,…,a r-1  such that a i prefers M(a i+1 ) to M(a i ) (0  i  r-1) Lemma: M is Pareto optimal if and only if M is maximal, trade-in-free and coalition-free Theorem: we may check whether a given matching M is Pareto optimal in O(m ) time

12 12 Finding a Pareto optimal matching Simple greedy algorithm, referred to as the serial dictatorship mechanism by economists for each agent a in turn if a has an unmatched house on his list match a to the most-preferred such house; else report a as unmatched; Theorem: The serial dictatorship mechanism constructs a Pareto optimal matching in O(m ) time Abdulkadiroğlu and Sönmez, 1998 Example a 1 : h 1 h 2 h 3 a 2 : h 1 h 2 a 3 : h 1 h 2 a 1 : h 1 h 2 h 3 a 2 : h 1 h 2 a 3 : h 1 h 2 M 1 ={(a 1,h 1 ), (a 2,h 2 )} M 2 ={(a 1,h 3 ), (a 2,h 2 ), (a 3,h 1 )}

13 13 Related work Rank maximal matchings Matching M is rank maximal if, in M 1. Maximum number of agents obtain their first-choice house; 2. Subject to (1), maximum number of agents obtain their second-choice house; etc. Irving, Kavitha, Mehlhorn, Michail, Paluch, SODA 04 A rank maximal matching is Pareto optimal, but need not be of maximum size Popular matchings Matching M is popular if there is no other matching M ’ such that: more agents prefer M ’ to M than prefer M to M ’ Abraham, Irving, Kavitha, Mehlhorn, SODA 05 A popular matching is Pareto optimal, but need not exist Maximum cardinality minimum weight matchings Such a matching M may be found in G in O(  nmlog n) time Gabow and Tarjan, 1989 M is a maximum Pareto optimal matching

14 14 Faster algorithm for finding a maximum Pareto optimal matching Three-phase algorithm with O(  nm) overall complexity Phase 1 – O(  nm) time Find a maximum matching in G Classical O(  nm) augmenting path algorithm Hopcroft and Karp, 1973 Phase 2 – O(m) time Enforce trade-in-free property Phase 3 – O(m) time Enforce coalition-free property Extension of Gale’s Top-Trading Cycles (TTC) algorithm Shapley and Scarf, 1974

15 15 Phase 1 a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9 Maximum matching M in G has size 8 M must be maximal No guarantee that M is trade-in-free or coalition-free

16 16 Phase 1 a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9 Maximum matching M in G has size 9 M must be maximal No guarantee that M is trade-in-free or coalition-free

17 17 Phase 1 a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9 Maximum matching M in G has size 9 M must be maximal No guarantee that M is trade-in-free or coalition-free M not coalition-free M not trade-in-free

18 18 Phase 2 outline Repeatedly search for a matched agent a and an unmatched house h such that a prefers h to h ’= M(a) Promote a to h h ’ is now unmatched Example a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9

19 19 Phase 2 outline Repeatedly search for a matched agent a and an unmatched house h such that a prefers h to h ’= M(a) Promote a to h h ’ is now unmatched Example a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9

20 20 Phase 2 outline Repeatedly search for a matched agent a and an unmatched house h such that a prefers h to h ’= M(a) Promote a to h h ’ is now unmatched Example a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9

21 21 Phase 2 outline Repeatedly search for a matched agent a and an unmatched house h such that a prefers h to h ’= M(a) Promote a to h h ’ is now unmatched Example a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9

22 22 Phase 2 termination Once Phase 2 terminates, matching is trade-in-free With suitable data structures, Phase 2 is O(m) Coalitions may remain… a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9

23 23 Build a path P of agents (represented by a stack) Each house is initially unlabelled Each agent a has a pointer p(a) pointing to M(a) or the first unlabelled house on a ’s preference list (whichever comes first) Keep a counter c(a) for each agent a (initially c(a)=0 ) This represents the number of times a appears on the stack Outer loop iterates over each matched agent a such that p(a)  M(a) Initialise P to contain agent a Inner loop iterates while P is nonempty Pop an agent a ’ from P If c(a ’ )=2 we have a coalition (CYCLE) Remove by popping the stack and label the houses involved Else if p(a ’ )=M(a ’ ) we reach a dead end (BACKTRACK) Label M(a ’ ) Else add a ’’ where p(a ’ )=M(a ’’ ) to the path (EXTEND) Push a ’ and a ’’ onto the stack Increment c(a ’’ ) Phase 3 outline

24 24 Once Phase 3 terminates, matching is coalition-free Phase 3 termination a 1 : h 4 h 5 h 3 h 2 h 1 a 2 : h 3 h 4 h 5 h 9 h 1 h 2 a 3 : h 5 h 4 h 1 h 2 h 3 a 4 : h 3 h 5 h 4 a 5 : h 4 h 3 h 5 a 6 : h 2 h 3 h 5 h 8 h 6 h 7 h 1 h 11 h 4 h 10 a 7 : h 1 h 4 h 3 h 6 h 7 h 2 h 10 h 5 h 11 a 8 : h 1 h 5 h 4 h 3 h 7 h 6 h 8 a 9 : h 4 h 3 h 5 h 9 Phase 3 is O(m) Theorem: A maximum Pareto optimal matching can be found in O(  nm) time

25 25 Initial property rights Suppose A ’  A and each member of A ’ owns a house initially For each agent a  A ’, denote this house by h(a) Truncate a ’s list at h(a) Form matching M by pre-assigning a to h(a) Use Hopcroft-Karp algorithm to augment M to a maximum cardinality matching M ’ in restricted HA instance Then proceed with Phases 2 and 3 as before Constructed matching M ’ is individually rational If A ’= A then we have a housing market TTC algorithm finds the unique matching that belongs to the core Shapley and Scarf, 1974 Roth and Postlewaite, 1977

26 26 Minimum Pareto optimal matchings Theorem: Problem of finding a minimum Pareto optimal matching is NP-hard Result holds even if all preference lists have length 3 Reduction from Minimum Maximal Matching Problem is approximable within a factor of 2 Follows since any Pareto optimal matching is a maximal matching in the underlying graph G Any two maximal matchings differ in size by at most a factor of 2 Korte and Hausmann, 1978

27 27 Interpolation of Pareto optimal matchings Given an HA instance I, p - (I) and p + (I) denote the sizes of a minimum and maximum Pareto optimal matching Theorem: I admits a Pareto optimal matching of size k, for each k such that p - (I)  k  p + (I) Given a Pareto optimal matching of size k, O ( m ) algorithm constructs a Pareto optimal matching of size k+1 or reports that k = p + (I) Based on assigning a vector  r 1, …, r k  to an augmenting path P =  a 1, h 1, …, a k, h k  where r i =rank a i (h i ) Examples:  1,3,2   1,2,2  Find a lexicographically smallest augmenting path h1h1 h2h2 h3h3 h4h4 1 2 1 h5h5 a1a1 a2a2 a3a3 a4a4 2 3 1 1 2

28 28 Open problems Finding a maximum Pareto optimal matching Ties in the preference lists Solvable in O(  nmlog n) time Solvable in O(  nm) time? One-many case (houses may have capacity >1 ) Non-bipartite case Solvable in O(  (n  (m, n))mlog 3/2 n) time D.J. Abraham, D.F. Manlove Pareto optimality in the Roommates problem Technical Report TR-2004-182 of the Computing Science Department of Glasgow University Solvable in O(  nm) time?


Download ppt "Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department."

Similar presentations


Ads by Google