Download presentation
Presentation is loading. Please wait.
Published byHoward Hicks Modified over 9 years ago
1
Introduction to algorithm design and recursion CS125 Spring 2007 Arthur Kantor
2
Algorithm An algorithm is a computational process for solving a problem. –computational: a computer must be able to perform the steps of the process This concept was formalized by Alan Turing and Alonzo Church in the 1930ies One of the great results of computer science
3
Algorithm An algorithm is a computational process for solving a problem. –solving The algorithm must actually give the correct solution after it terminates –problem Typically the problem is somewhat general. –E.g. “Sort any list of numbers” instead of “Sort this particular list of numbers”
4
Algorithm design The next few weeks we will be talking about designing algorithms to solve problems –We can talk about whether the algorithm is described precisely enough so that it can be translated into a computer program –We can talk about whether the algorithm solves the given problem –We do not need to discuss the actual code
5
Recursive algorithm A recursive algorithm solves the problem by possibly using the result of applying itself to a simpler problem Example: Draw this picture
6
Another example Draw this picture
7
Properties of all recursive algorithms A recursive algorithm solves the large problem by using its solution to a simpler sub- problem –divide and conquer approach Eventually the sub-problem is simple enough that it can be solved without applying the algorithm to it recursively –This is called the ‘base case’
8
Another example The factorial function: multiply together all numbers from 1 to n. denoted n! n!=n*(n-1)*(n-2)*…2*1 n!= n*(n-1)!if n>0 1if n==0
9
Another example The factorial function: multiply together all numbers from 1 to n. denoted n! n!=n*(n-1)*(n-2)*…2*1 n!= n*(n-1)!if n>0 1if n==0 General case: Uses a solution to a simpler sub-problem Base case: Solution is given directly
10
4! Walk-through 4!= n!= n*(n-1)!if n>0 1if n==0
11
Java implementation of n! public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n!= n*(n-1)!if n>0 1if n==0
12
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); }
13
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3)
14
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2)
15
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1)
16
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) n=1 Returns 1*factorial(0)
17
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) n=1 Returns 1*factorial(0) n=0 Returns 1
18
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) n=1 Returns 1*factorial(0) 1
19
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) 1
20
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) 2
21
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } n=4 Returns 4*factorial(3) 6
22
factorial(4); factorial(4) public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); } 24
23
How the computer does it The computer remembers the entire stack of partially completed function calls The execution of caller is paused until the called function returns with its answer n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) Execution of factorial(4) is paused until factorial(3) returns with its answer Once factorial(3) returns, execution of factorial(4) continues
24
Why recursion? We could have implemented n! using a while loop (how?) In general, any recursively defined function can be re-implmented with a while loop. Sometimes it is much more natural to specify a function recursively than with a loop
25
Another example prod(list) returns a product of all the numbers in the list prod({1,3,3,4}) should return 36
26
Implementation of prod() float prod(float[] list){ return helperProd(list, 0); } float helperProd(float[] list, int k){ if (k==list.length) return 1; else return list[k]*helperProd(list,k+1); }
27
walkthrough helperProd({1,3,3,4},0) float helperProd(float[] list, int k){ if (k==list.length) return 1; else return list[k]*helperProd(list,k+1); }
28
Recursion in real life
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.