Download presentation

1
**Test on Topic 16 Radicals Solutions**

Math 99 – Topic 16 Test on Radicals Test on Topic 16 Radicals Solutions 1. Evaluate each radical expression, if possible (If it is not a real number, so state.): 36 81 3 64 (a) 49 (b) (c) – 4 (d) 1 16 1 (e) 4 (f) 4 16 = 2 (g) – 25 5 (h) 2. Evaluate each exponential expression, if possible (If it is not a real number, so state.): 11 4 3 3 (8) 2 3 1 (a) (b) 25 2 (c) 3 3. Express each of the following in their simplest exponential form. x (a) 3 27 x15 (b) x 7 (c) 5 2 4 5 4. Simplify the following expressions giving your answer in radical form. x 4 y 6 4 y13 (a) x 6 (b) 3 y 17 (c) 5 (d) (e) 5 3 16z 6 2 1 5. Simplify (write the answer in radical form without a negative exponent): 6. Simplify (Write exact expressions using radicals, not decimals from a calculator). Assume the variables represent positive numbers. 3 49 6 5 (a) (e) 80 64 81 (b) (f) 20 25 4 (c) (g) (d) (h) 3 32 12 5 Page | 1

2
**Math 99 – Topic 16 Test on Radicals**

7. Simplify (Write exact expressions using radicals, not decimals from a calculator). (a) (d) (g) 3 27 x3 y10 z 5 8x 3 y 3 z 5 2x 2 y 3 z 64 xy 8x 7 y 5 (b) (e) (h) 2x 4 y 5 z 6 8xy 6 z 64 xy 8x 7 y 5 2 y 3 z 3 (c) (f) (i) 3 40x 6 y 5 z 19 72x5 y 4 z 3 36x 3 y 5 w4 8 yz 8. Simplify by rationalizing the denominator. 12 3 8 y 2 z 5 2 y 36 49 (a) (b) (c) 10 x 2 y 40 xy 5 8 2 (d) 8x y z 3 4 5 (e) (f) 3x 2 y 3 4 xy 4 81 4 81 2 9 10 x 3 y 5 2 xy (g) (h) (i) 9. Simplify the following 5 2 5 2 20 3 2 2 5 (a) 12 + 27 (b) 8 + (c) 10. Simplify (Write exact expressions using radicals, not decimals from a calculator). Assume the variables represent positive numbers. 64 81 8x 3 y 4 z 5 12 3 3 49 36 3x 2 y 3 4 xy 6 5 10 x 2 y 40 xy 5 8 y 2 z 5 2 y 12 5 8 2 10 (a) (e) (i) (b) (f) (j) (c) (g) (k) (d) (h) (l) Page | 2

3
**Math 99 – Topic 16 Test on Radicals**

11. Solve the following Radical Equations. (a) x = 9 (b) 4x 3 = 9 (c) 2 x = 8 (d) 3x 6 = 3 12. Solve the following Radical Equation. 2x 3 = x 13. Solve the following Radical Equations 2x 17 = x 7 14. Solve the following Radical Equations. (a) 4x 5 = 5 (b) x 2 7 = 1 15. Solve the following Radical Equation 2x 17 = x + 1. Page | 3

4
**Test on Topic 13 Radicals Solutions**

Math 99 – Topic 16 Test on Radicals Test on Topic 13 Radicals Solutions 1. Evaluate each radical expression, if possible (If it is not a real number, so state.): (a) 49 = 7 or – 7 36 81 36 81 6 9 2 3 (b) = = = (c) – 4 = Not real number 3 64 (d) = – 4 1 16 4 1 1 2 1 2 (e) 4 = = or – 16 (f) 4 16 = 2 (g) – 25 = Not a real number 5 1 (h) = – 1 2. Evaluate each exponential expression, if possible (If it is not a real number, so state.): (8) 2 3 (a) = 3 (8) 2 = 3 64 = 4 1 1 25 1 25 1 5 (b) 25 2 = = = 1 2 11 4 3 3 11 3 8 (c) = 3 4 4 = 3 4 = = 9 3 3. Express each of the following in their simplest exponential form. 15 (a) 3 27 x 15 = 3 27 x 3 15 = 3 x 3 = 3x5 7 (b) x 7 = x 2 x 5 2 . 4 5 10 20 1 x 2 5 2 (c) 4 5 = x = x = Page | 4

5
** x 4 y 16z 16 z 16z 1 1 1 4 5 = y13 y 3 4 y 64**

Math 99 – Topic 16 Test on Radicals 4. Simplify the following expressions giving your answer in radical form. (a) x 6 = x3 (b) 3 y 17 = y 5 3 y 2 x 52 6 6 x (c) 5 = = x15 4 y13 y y (d) = 4 y 5 3 (e) 43 y5 3 64 y15 = 64 y15 = 8 y y = = 16z 6 2 1 5. Simplify (write the answer in radical form without a negative exponent): 16z 6 2 1 1 6 2 1 16 z 6 1 16 z 6 1 4 z 3 = = = = 16 z 6. Simplify (Write exact expressions using radicals, not decimals from a calculator). Assume the variables represent positive numbers. 80 16 5 = 16 5 (a) = = 4 5 (b) (c) 20 3 49 = 4 5 3 49 = 4 5 = 3 7 2 5 (d) 3 32 = 3 8 4 = 3 8 3 4 = 23 4 64 81 25 4 64 81 25 4 8 9 5 2 (e) (f) = = 6 5 6 5 5 5 30 5 (f) = = 12 5 12 5 12 5 5 5 60 5 4 15 5 4 15 5 2 15 5 (g) = = = = = = Page | 5

6
**Math 99 – Topic 16 Test on Radicals**

7. Simplify (Write exact expressions using radicals, not decimals from a calculator). (b) 3 27 x3 y10 z 5 = 3 27 3 x3 3 y10 3 z 5 = 3xy3 y z 3 z 2 3 = 3xy3z 3 yz 2 (c) 2x 4 y 5 z 6 8xy 6 z = = 2x 4 y 5 z 6 8xy 6 z 16x5 y11z 7 16 x5 y11 z 7 4x2 x y5 y z3 z 4x2y5z3 xyz (c) 3 40x 6 y 5 z 19 = 3 40 3 x 6 3 y 5 3 z 19 = 3 8 5 3 y 5 3 z 19 23 5 x2 y z 6 3 z 2x2 yz z = (d) 8x 3 y 3 z 5 2x 2 y 3 z = 16x 5 y 6 z 6 = 16 x 5 y z 6 = 4x2 x y3z3 = 4x2y3z3 x 64 xy 8x 7 y 5 8 6 8 x6 y 4 2 2 x3 y 2 (e) = = = x y 4 72x5 y 4 z 3 72 x5 y 4 z3 6 2 x2 x y 2 z z = 6x2 y xz (f) = = 64 xy 8x 7 y 5 8 6 8 x6 y 4 2 2 x3 y 2 (g) = = = x y 4 2 y 3 z 3 2 y 3 z 8 yz 3 y 2 4 z 2 y 2 4 z y 2 z (h) = = = = 8 yz 2 (i) 36x3 y5 w4 36 x3 y5 w4 6 x x y y w2 6xy 2 w2 xy Page | 6

7
**Math 99 – Topic 16 Test on Radicals**

8. Simplify by rationalizing the denominator. 12 3 12 3 3 12 3 3 (a) = = = 4 3 8 y 2 z 5 2 y 8 y 2 z 5 2 y 2 y 8 y 2 z y 2 y (b) = = = 4 yz y 36 49 36 49 6 7 (c) = = (d) 8x 3 y 4 z 5 = 8 x 3 y z 5 = 2 2 x x y 2 z z = 2xy 2 z 2xz 10 x 2 y 40 xy 5 x 4 y 2 x 4 y 2 x 2 y (e) = = = 8 2 8 2 2 8 2 2 (f) = = = 4 2 3x 2 y 3 4 xy 3x 2 y 3 4 xy 4 xy 3 x 2 y xy 4 xy 3 xy x y 4 6 xy xy 4 3 xy xy 2 (g) = = = = = 4 81 (h) 4 81 2 9 10 x3 y 5 2 xy 10 x3 y5 2 xy 2 xy 10 x3 y xy 2 xy 5 x 2 y xy 1 (i) 5x2 y xy 9. Simplify the following (a) 12 + 27 = 2 3 3 3 5 3 (b) 8 + 20 3 2 2 5 2 2 2 5 3 2 2 5 2 5 2 5 2 25 5 (c) 2 5 2 2 3 Page | 7

8
**Math 99 – Topic 16 Test on Radicals**

10. Simplify (Write exact expressions using radicals, not decimals from a calculator). Assume the variables represent positive numbers. 3 49 64 81 3 49 64 81 3 7 8 9 (a) (b) = = 6 5 6 5 5 5 30 5 (c) = = 12 5 12 5 12 5 5 5 60 5 4 15 5 4 15 5 2 15 5 (d) = = = = = = 36 49 36 49 6 7 (e) = = (f) 8x 3 y 4 z 5 = 8 x 3 y z 5 = 2 2 x x y 2 z z = 2xy 2 z 2xz 10 x 2 y 40 xy 5 x 4 y 2 x 4 y 2 x 2 y (g) = = = 8 2 8 2 2 8 2 2 (h) = = = 4 2 3x 2 y 3 4 xy 3x 2 y 3 4 xy 4 xy 3x 2 y xy 4 xy 3xy x y 4 6 xy xy 4 3xy xy 2 (i) = = = = = 12 3 12 3 3 12 3 3 (j) = = = 4 3 8 y 2 z 5 2 y 8 y 2 z 5 2 y 8 y 2 z y 2 y (k) = 2 y = = 4 yz y 5 10 5 10 10 5 10 10 10 2 (l) = = = 11. Solve the following Radical Equations. (a) x = 4x 3 = 9 (b) 9 x = 81 4x – 3 = 81 4x x = 84 21 Page | 8

9
**Math 99 – Topic 16 Test on Radicals**

2 x x = 8 4 16 (d) 3x 6 = 3 3x – 6 3x = = 9 15 x 12. Solve the following Radical Equation. = 5 2x 3 2x + 3 = x x2 x2 – 2x – 3 (x – 3)(x + 1) x = 3 or x = – 1 but after checking x = – 1 is unusable its a “phantom solution” so only x = 3 works 13. Solve the following Radical Equations. 2x 17 2x + 17 2x x x 7 x – 7 x – 24 – 24 = (after check x = – 24 is not a usable solution so there is no solution to this equation) 14. Solve the following Radical Equations. 4x 5 = (b) x 2 7 (a) 5 = 1 2 3x 2 4x + 5 = 25 = 8 3x 2 4x = 20 = 4 x = 5 3x + 2 = 16 3x x = 14 15. Solve the following Radical Equation 2x 17 = x + 1. 2x 17 2x + 17 17 = x+1 (x +1)2 (x + 1)(x + 1) x2 + 2x + 1 x2 + 1 x2 – 16 (x + 4)(x – 4) So x = – 4 or x = 4 but after checking x = – 4 is unusable so only x = 4 is a solution Page | 9

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google