Presentation is loading. Please wait.

Presentation is loading. Please wait.

Formation of Astrobiologically Important Molecules in Extraterrestrial Environments Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu,

Similar presentations


Presentation on theme: "Formation of Astrobiologically Important Molecules in Extraterrestrial Environments Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu,"— Presentation transcript:

1 Formation of Astrobiologically Important Molecules in Extraterrestrial Environments Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu, HI 96822 kaiser@gold.chem.hawaii.edu http://www.chem.hawaii.edu/Bil301/welcome.html

2 Orion Constellation Orion Nebula

3 es = 10 - molecular clouds and cores circumstellar envelopes Interstellar Medium T = 10 – 4000 K  = 10 2 – 10 9 cm -3 T = 10 K  = 10 -11 cm -3

4

5 Amino Acid

6 Characteristics of a Chemical Reaction 1. exoergic vs. endoergic 2. no entrance barrier vs. barrier 3. binary vs. ternary reactions

7 The 70es – Bimolecular Ion-Molecule Reactions k = 10 -9 cm 3 s -1 (Herbst et. al) O O + + e - O + + H 2 OH + + H OH + + H 2 OH 2 + + H OH 2 + + H 2 OH 3 + + H OH 3 + + e - H 2 O + H simple hydrides in cold molecular clouds (CH 4, NH 3, H 2 O)

8 The 80es – Problems with Ion-Molecule Reactions

9

10 The 90es – Bimolecular Neutral-Neutral Reactions CN(X 2  + ) + C n H m C n H (m-1) CN + H C 2 H(X 2  + ) + C n H m C n H (m-1) C 2 H + H C( 3 P j ) + C n H m C (n+1) H (m-1) + H k = 10 -10 cm 3 s -1 (Kaiser et al.; Smith et al.) C 2 (X 1  g + ) + C n H m C (n+2) H (m-1) + H

11 The 90es – Bimolecular Neutral-Neutral Reactions Titan IRC+10216

12 es = 10 - molecular clouds and cores circumstellar envelopes Interstellar Medium T = 10 – 4000 K  = 10 2 – 10 9 cm -3 T = 10 K  = 10 -11 cm -3

13 UV photons cosmic ray particles Cold Molecular Cloud B68

14 carbon dioxide carbon monoxide water methaneammonia methanol

15 The late 90es – Grain-Surface Reactions H + H H 2

16 carbon dioxidecarbon monoxide water methane ammonia methanol

17 The 00es - Galactic Cosmic Ray Processing 10 MeV 9 MeV 1.ionization 2. electronic excitation 3. vibrational excitation 4. electron attachment cleavage of chemical bonds ‘electronic’ interaction

18 The 00es - Galactic Cosmic Ray Processing 1. Energy Conservation 10 eV transfer – 4.5 eV bond energy = 5.5 eV maximum kinetic energy 2. Angular Momentum Conservation H atom (5.15 eV) versus CH 3 radical (0.35 eV) kinetic energy vibrational energy

19 Non-Equilibrium Chemistry 1. exoergic vs. endoergic 2. no entrance barrier vs. barrier 3. binary vs. ternary reactions A* + BC

20 C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol H 2 O, CO, CO 2, NH 3, CH 4, CH 3 OH CO/CH 4 CO 2 /C 2 H 4 H 2 O/C 2 H 2

21 C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol

22 Surface Scattering Machine T = 10 – 350 K p = 8  10 -11 torr LET (5 keV e - ) = 3 – 5 keV  m -1 = LET (10 MeV H + ) 30 min laboratory = 10 6 years in cold molecular cloud

23

24

25 1.electron source 2. cation source (positively charged particles) Sources 3. pyrolytic radical source 4. tunable photon source

26 CO/CH 4 Ice before Irradiation at 10 K

27 CO/CH 4 Ice after Irradiation at 10 K 612 cm -1 2 (CH 3 out of plane)

28 CO/CH 4 Ice after Irradiation at 10 K 1853 cm -1 3 (HCO; CO stretch)

29 CO/CH 4 Ice after Irradiation at 10 K 1725 cm -1 4 (CH 3 CHO; CO stretch)

30 QMS: CO/CH 4 during Irradiation H + H H 2

31 CO/CH 4 Ices after Irradiation at 10 K [CH 4 -CO] [CH 3 …HCO] CH 3 CHO

32 Kinetics (pseudo) 1 st order kinetics electron induced decomposition [CH 4 -CO] [CH 3 …HCO] CH 3 CHO

33 Kinetics [CH 4 -CO] [CH 3 …HCO] CH 3 CHO k1k1 k2k2 a = 2.32 (  0.42)  10 15 cm -2 k 1 <<k 2 = 1.13 (  0.29)  10 -11 s -1 a = 2.32 (  0.42)  10 15 cm -2 k 1 <<k 2 = 1.13 (  0.29)  10 -11 s -1

34 CH 4 (X 1 A 1 ) CH 3 (X 2 A 2 ’’ ) +H( 2 S 1/2 ) CO (X 1   ) +H( 2 S 1/2 ) HCO (X 2 A ’ ) a = 3.87 (  0.18)  10 15 cm -2 k 3 = 4.4 (  0.37)  10 -11 s -1 a = 3.87 (  0.18)  10 15 cm -2 k 3 = 4.4 (  0.37)  10 -11 s -1 a = 3.39 (  0.15)  10 15 cm -2 k 4 = 5.49 (  0.73)  10 -11 s -1 a = 3.39 (  0.15)  10 15 cm -2 k 4 = 5.49 (  0.73)  10 -11 s -1 k3k3 k3k3 k4k4 k4k4 Kinetics [CH 4 -CO] [CH 3 …HCO] CH 3 CHO

35 Electronic Structure Calculations Osamura et al. 2004

36 C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol H 2 O, CO, CO 2, NH 3, CH 4, CH 3 OH CO/CH 4 CO 2 /C 2 H 4 H 2 O/C 2 H 2

37 CO 2 /C 2 H 4 Ices after Irradiation at 10 K 2139 cm -1 1 (CO; stretch)

38 CO 2 /C 2 H 4 Ices after Irradiation at 10 K 1723 cm -1 4 (CH 3 CHO; CO stretch)

39 CO 2 /C 2 H 4 Ices after Irradiation at 10 K 868 cm -1 12 (c-C 2 H 4 O; ring)

40 Kinetics (pseudo) 1 st order kinetics electron induced decomposition [C 2 H 4 -CO 2 ] [C 2 H 4 …O…CO] [C 2 H 4 O+CO]

41 C 2 H 4 + O CH 3 CHO a = 2.10 (  0.09)  10 15 cm -2 k 1 = 5.22 (  0.37)  10 -12 s -1 a = 2.10 (  0.09)  10 15 cm -2 k 1 = 5.22 (  0.37)  10 -12 s -1 a = 1.77 (  0.05)  10 15 cm -2 k 2 = 6.29 (  0.34)  10 -12 s -1 a = 1.77 (  0.05)  10 15 cm -2 k 2 = 6.29 (  0.34)  10 -12 s -1 k1k1 k1k1 Kinetics C 2 H 4 + O c-C 2 H 4 O k2k2 k2k2

42 Mechanism

43 ‘cone of acceptance’ favors attack of  bond (formation of acetaldehyde and ethylene oxide)

44 Mechanisms [CH 4 -CO] [CH 3 …HCO] CH 3 CHO a = 2.32 (  0.42)  10 15 cm -2 k = 1.13 (  0.29)  10 -11 s -1 a = 2.32 (  0.42)  10 15 cm -2 k = 1.13 (  0.29)  10 -11 s -1 [C 2 H 4 -CO 2 ] [C 2 H 4 …O…CO] [C 2 H 4 O+CO] a = 2.10 (  0.09)  10 15 cm -2 k = 5.22 (  0.37)  10 -12 s -1 a = 2.10 (  0.09)  10 15 cm -2 k = 5.22 (  0.37)  10 -12 s -1 a = 1.77 (  0.05)  10 15 cm -2 k = 6.29 (  0.34)  10 -12 s -1 a = 1.77 (  0.05)  10 15 cm -2 k = 6.29 (  0.34)  10 -12 s -1 CH 3 CHOc-C 2 H 4 O kinetics versus dynamics

45 C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol H 2 O, CO, CO 2, NH 3, CH 4, CH 3 OH CO/CH 4 CO 2 /C 2 H 4 H 2 O/C 2 H 2 synchrotron irradiations are crucial to discriminate between O( 3 P) and O( 1 D)

46 es = 10 - molecular clouds and cores circumstellar envelopes Interstellar Medium T = 10 – 4000 K  = 10 2 – 10 9 cm -3 T = 10 K  = 10 -11 cm -3

47 Crossed Molecular Beams Machine

48 Acknowledgements Chris Bennett (UH, USA) Corey Jamieson (UH, USA) Prof. Nigel Mason (OU, UK) Prof. Yoshihiro Osamura (Tokyo, Japan)


Download ppt "Formation of Astrobiologically Important Molecules in Extraterrestrial Environments Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu,"

Similar presentations


Ads by Google