Download presentation
Presentation is loading. Please wait.
Published byAriel Rosamond McDowell Modified over 9 years ago
1
Formation of Astrobiologically Important Molecules in Extraterrestrial Environments Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu, HI 96822 kaiser@gold.chem.hawaii.edu http://www.chem.hawaii.edu/Bil301/welcome.html
2
Orion Constellation Orion Nebula
3
es = 10 - molecular clouds and cores circumstellar envelopes Interstellar Medium T = 10 – 4000 K = 10 2 – 10 9 cm -3 T = 10 K = 10 -11 cm -3
5
Amino Acid
6
Characteristics of a Chemical Reaction 1. exoergic vs. endoergic 2. no entrance barrier vs. barrier 3. binary vs. ternary reactions
7
The 70es – Bimolecular Ion-Molecule Reactions k = 10 -9 cm 3 s -1 (Herbst et. al) O O + + e - O + + H 2 OH + + H OH + + H 2 OH 2 + + H OH 2 + + H 2 OH 3 + + H OH 3 + + e - H 2 O + H simple hydrides in cold molecular clouds (CH 4, NH 3, H 2 O)
8
The 80es – Problems with Ion-Molecule Reactions
10
The 90es – Bimolecular Neutral-Neutral Reactions CN(X 2 + ) + C n H m C n H (m-1) CN + H C 2 H(X 2 + ) + C n H m C n H (m-1) C 2 H + H C( 3 P j ) + C n H m C (n+1) H (m-1) + H k = 10 -10 cm 3 s -1 (Kaiser et al.; Smith et al.) C 2 (X 1 g + ) + C n H m C (n+2) H (m-1) + H
11
The 90es – Bimolecular Neutral-Neutral Reactions Titan IRC+10216
12
es = 10 - molecular clouds and cores circumstellar envelopes Interstellar Medium T = 10 – 4000 K = 10 2 – 10 9 cm -3 T = 10 K = 10 -11 cm -3
13
UV photons cosmic ray particles Cold Molecular Cloud B68
14
carbon dioxide carbon monoxide water methaneammonia methanol
15
The late 90es – Grain-Surface Reactions H + H H 2
16
carbon dioxidecarbon monoxide water methane ammonia methanol
17
The 00es - Galactic Cosmic Ray Processing 10 MeV 9 MeV 1.ionization 2. electronic excitation 3. vibrational excitation 4. electron attachment cleavage of chemical bonds ‘electronic’ interaction
18
The 00es - Galactic Cosmic Ray Processing 1. Energy Conservation 10 eV transfer – 4.5 eV bond energy = 5.5 eV maximum kinetic energy 2. Angular Momentum Conservation H atom (5.15 eV) versus CH 3 radical (0.35 eV) kinetic energy vibrational energy
19
Non-Equilibrium Chemistry 1. exoergic vs. endoergic 2. no entrance barrier vs. barrier 3. binary vs. ternary reactions A* + BC
20
C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol H 2 O, CO, CO 2, NH 3, CH 4, CH 3 OH CO/CH 4 CO 2 /C 2 H 4 H 2 O/C 2 H 2
21
C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol
22
Surface Scattering Machine T = 10 – 350 K p = 8 10 -11 torr LET (5 keV e - ) = 3 – 5 keV m -1 = LET (10 MeV H + ) 30 min laboratory = 10 6 years in cold molecular cloud
25
1.electron source 2. cation source (positively charged particles) Sources 3. pyrolytic radical source 4. tunable photon source
26
CO/CH 4 Ice before Irradiation at 10 K
27
CO/CH 4 Ice after Irradiation at 10 K 612 cm -1 2 (CH 3 out of plane)
28
CO/CH 4 Ice after Irradiation at 10 K 1853 cm -1 3 (HCO; CO stretch)
29
CO/CH 4 Ice after Irradiation at 10 K 1725 cm -1 4 (CH 3 CHO; CO stretch)
30
QMS: CO/CH 4 during Irradiation H + H H 2
31
CO/CH 4 Ices after Irradiation at 10 K [CH 4 -CO] [CH 3 …HCO] CH 3 CHO
32
Kinetics (pseudo) 1 st order kinetics electron induced decomposition [CH 4 -CO] [CH 3 …HCO] CH 3 CHO
33
Kinetics [CH 4 -CO] [CH 3 …HCO] CH 3 CHO k1k1 k2k2 a = 2.32 ( 0.42) 10 15 cm -2 k 1 <<k 2 = 1.13 ( 0.29) 10 -11 s -1 a = 2.32 ( 0.42) 10 15 cm -2 k 1 <<k 2 = 1.13 ( 0.29) 10 -11 s -1
34
CH 4 (X 1 A 1 ) CH 3 (X 2 A 2 ’’ ) +H( 2 S 1/2 ) CO (X 1 ) +H( 2 S 1/2 ) HCO (X 2 A ’ ) a = 3.87 ( 0.18) 10 15 cm -2 k 3 = 4.4 ( 0.37) 10 -11 s -1 a = 3.87 ( 0.18) 10 15 cm -2 k 3 = 4.4 ( 0.37) 10 -11 s -1 a = 3.39 ( 0.15) 10 15 cm -2 k 4 = 5.49 ( 0.73) 10 -11 s -1 a = 3.39 ( 0.15) 10 15 cm -2 k 4 = 5.49 ( 0.73) 10 -11 s -1 k3k3 k3k3 k4k4 k4k4 Kinetics [CH 4 -CO] [CH 3 …HCO] CH 3 CHO
35
Electronic Structure Calculations Osamura et al. 2004
36
C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol H 2 O, CO, CO 2, NH 3, CH 4, CH 3 OH CO/CH 4 CO 2 /C 2 H 4 H 2 O/C 2 H 2
37
CO 2 /C 2 H 4 Ices after Irradiation at 10 K 2139 cm -1 1 (CO; stretch)
38
CO 2 /C 2 H 4 Ices after Irradiation at 10 K 1723 cm -1 4 (CH 3 CHO; CO stretch)
39
CO 2 /C 2 H 4 Ices after Irradiation at 10 K 868 cm -1 12 (c-C 2 H 4 O; ring)
40
Kinetics (pseudo) 1 st order kinetics electron induced decomposition [C 2 H 4 -CO 2 ] [C 2 H 4 …O…CO] [C 2 H 4 O+CO]
41
C 2 H 4 + O CH 3 CHO a = 2.10 ( 0.09) 10 15 cm -2 k 1 = 5.22 ( 0.37) 10 -12 s -1 a = 2.10 ( 0.09) 10 15 cm -2 k 1 = 5.22 ( 0.37) 10 -12 s -1 a = 1.77 ( 0.05) 10 15 cm -2 k 2 = 6.29 ( 0.34) 10 -12 s -1 a = 1.77 ( 0.05) 10 15 cm -2 k 2 = 6.29 ( 0.34) 10 -12 s -1 k1k1 k1k1 Kinetics C 2 H 4 + O c-C 2 H 4 O k2k2 k2k2
42
Mechanism
43
‘cone of acceptance’ favors attack of bond (formation of acetaldehyde and ethylene oxide)
44
Mechanisms [CH 4 -CO] [CH 3 …HCO] CH 3 CHO a = 2.32 ( 0.42) 10 15 cm -2 k = 1.13 ( 0.29) 10 -11 s -1 a = 2.32 ( 0.42) 10 15 cm -2 k = 1.13 ( 0.29) 10 -11 s -1 [C 2 H 4 -CO 2 ] [C 2 H 4 …O…CO] [C 2 H 4 O+CO] a = 2.10 ( 0.09) 10 15 cm -2 k = 5.22 ( 0.37) 10 -12 s -1 a = 2.10 ( 0.09) 10 15 cm -2 k = 5.22 ( 0.37) 10 -12 s -1 a = 1.77 ( 0.05) 10 15 cm -2 k = 6.29 ( 0.34) 10 -12 s -1 a = 1.77 ( 0.05) 10 15 cm -2 k = 6.29 ( 0.34) 10 -12 s -1 CH 3 CHOc-C 2 H 4 O kinetics versus dynamics
45
C 2 H 4 O Isomers acetaldehyde ethylene oxidevinyl alcohol H 2 O, CO, CO 2, NH 3, CH 4, CH 3 OH CO/CH 4 CO 2 /C 2 H 4 H 2 O/C 2 H 2 synchrotron irradiations are crucial to discriminate between O( 3 P) and O( 1 D)
46
es = 10 - molecular clouds and cores circumstellar envelopes Interstellar Medium T = 10 – 4000 K = 10 2 – 10 9 cm -3 T = 10 K = 10 -11 cm -3
47
Crossed Molecular Beams Machine
48
Acknowledgements Chris Bennett (UH, USA) Corey Jamieson (UH, USA) Prof. Nigel Mason (OU, UK) Prof. Yoshihiro Osamura (Tokyo, Japan)
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.