Presentation is loading. Please wait.

Presentation is loading. Please wait.

Assembly Language for x86 Processors 7 th Edition Chapter 1: Basic Concepts (c) Pearson Education, 2015. All rights reserved. You may modify and copy this.

Similar presentations


Presentation on theme: "Assembly Language for x86 Processors 7 th Edition Chapter 1: Basic Concepts (c) Pearson Education, 2015. All rights reserved. You may modify and copy this."— Presentation transcript:

1 Assembly Language for x86 Processors 7 th Edition Chapter 1: Basic Concepts (c) Pearson Education, 2015. All rights reserved. You may modify and copy this slide show for your personal use, or for use in the classroom, as long as this copyright statement, the author's name, and the title are not changed. Slides prepared by the author Revised by Zuoliu Ding at Fullerton College, 07/2014 Kip Irvine

2 2 Chapter Overview Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015.

3 3 Welcome to Assembly Language Some Good Questions to Ask Assembly Language Applications Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015.

4 4 Questions to Ask Why am I learning Assembly Language: What background should I have? What is an assembler? What hardware/software do I need? What types of programs will I create? What do I get with this book? What will I learn? IA-32 architecture, memory modes, Boolean logic Create AL apps, debug, trace, data representations Interface AL to C++, How C++ code works Windows apps in protected mode Hardware, OS system call, and interrupts Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015.

5 5 Welcome to Assembly Language (cont) How does assembly language (AL) relate to machine language? How do C++ and Java relate to AL? Is AL portable? Why learn AL? Device drive and embedded programming Simulation/Monitoring Game and real-time apps Understanding Hardware, OS, and Apps Mixed language programming Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015.

6 6 Assembly Language Applications Some representative types of applications: Business application for single platform Hardware device driver Business application for multiple platforms Embedded systems & computer games (see next panel)

7 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 7 Comparing ASM to High-Level Languages

8 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 8 What's Next Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations

9 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 9 Virtual Machine Concept Virtual Machines Specific Machine Levels

10 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 10 Virtual Machine Example: JVM JVM, the main component of Java architecture and the part of JRE. Provides the cross platform functionality to java. A software process that converts the compiled Java byte code to machine code. Byte code is an intermediary language between Java source and the host system. http://en.wikipedia.org/wiki/Java_virtual_machine

11 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 11 Virtual Machine Example:.NET CLR http://en.wikipedia.org/wiki/.NET_Framework Common Language Runtime (CLR) is the virtual machine of Microsoft's.NET framework, responsible for managing the execution of.NET programs.virtual machineMicrosoft's.NET framework A process known as just-in-time (JIT) compilation, the CLR compiles the intermediate language code (CIL) into the machine instructions executed by the computer's CPU.just-in-time (JIT)CILCPU

12 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 12 Virtual Machines Tanenbaum: Virtual machine concept Programming Language analogy: Each computer has a native machine language (language L0) that runs directly on its hardware A more human-friendly language is usually constructed above machine language, called Language L1 Programs written in L1 can run two different ways: Interpretation – L0 program interprets and executes L1 instructions one by one Translation – L1 program is completely translated into an L0 program, which then runs on the computer hardware

13 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 13 Translating Languages English: Display the sum of A times B plus C. C++: cout << (A * B + C); Assembly Language: mov eax,A mul B add eax,C call WriteInt Intel Machine Language: A1 00000000 F7 25 00000004 03 05 00000008 E8 00500000 one to many one to one

14 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 14 Specific Machine Levels (descriptions of individual levels follow... )

15 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 15 High-Level Language Level 4 Application-oriented languages C++, Java, Pascal, Visual Basic... Programs compile into assembly language (Level 4)

16 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 16 Assembly Language Level 3 Instruction mnemonics that have a one-to- one correspondence to machine language Programs are translated into Instruction Set Architecture Level - machine language (Level 2)

17 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 17 Instruction Set Architecture (ISA) Level 2 Also known as conventional machine language Executed by Level 1 (Digital Logic)

18 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 18 Digital Logic Level 1 CPU, constructed from digital logic gates System bus Memory Implemented using bipolar transistors next: Data Representation

19 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 19 What's Next Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations

20 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 20 Data Representation Binary Numbers Translating between binary and decimal Binary Addition Integer Storage Sizes Hexadecimal Integers Translating between decimal and hexadecimal Hexadecimal subtraction Signed Integers Binary subtraction Character Storage

21 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 21 Binary Numbers Digits are 1 and 0 1 = true 0 = false MSB – most significant bit LSB – least significant bit Bit numbering: Reference: Binary numeral system at Wikipedia

22 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 22 Binary Numbers Each digit (bit) is either 1 or 0 Each bit represents a power of 2: Every binary number is a sum of powers of 2

23 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 23 Translating Binary to Decimal Weighted positional notation shows how to calculate the decimal value of each binary bit: dec = (D n-1  2 n-1 )  (D n-2  2 n-2 ) ...  (D 1  2 1 )  (D 0  2 0 ) D = binary digit, 0 or 1 binary 00001001 = decimal 9: (1  2 3 ) + (1  2 0 ) = 9

24 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 24 Translating Binary to Decimal Horner's rule: http://en.wikipedia.org/wiki/Horner’s_rulehttp://en.wikipedia.org/wiki/Horner’s_rule dec = ((…( (D n-1  2)  D n-2 )  2) ...  D 1 )  2  D 0 10001001 b = 128 +8 +1 = 137 d dec = ((…( (D 7  2)  D 6 )  2) ...  D 1 )  2  D 0 = ((…( (1  2)  0)  2) ...  0)  2  1 Good for code implementation Example: 10010101101 b  1197 d http://en.wikipedia.org/wiki/Binary-to- decimal_conversion#Conversion_to_and_from_other_numeral _systemshttp://en.wikipedia.org/wiki/Binary-to- decimal_conversion#Conversion_to_and_from_other_numeral _systems

25 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 25 Translating Unsigned Decimal to Binary Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value: 37 = 100101

26 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 26 Binary Addition Starting with the LSB, add each pair of digits, include the carry if present.

27 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 27 Integer Storage Sizes What is the largest unsigned integer that may be stored in 20 bits? Standard sizes: 1048475

28 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 28 Hexadecimal Integers Binary values are represented in hexadecimal.

29 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 29 Translating Binary to Hexadecimal Each hexadecimal digit corresponds to 4 binary bits. Example: Translate the binary integer 101101010011110010100 to hexadecimal: Try to separate: 0001,0110,1010,0111,1001,0100

30 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 30 Converting Hexadecimal to Decimal Multiply each digit by its corresponding power of 16: dec = (D 3  16 3 ) + (D 2  16 2 ) + (D 1  16 1 ) + (D 0  16 0 ) Hex 1234 equals (1  16 3 ) + (2  16 2 ) + (3  16 1 ) + (4  16 0 ), or decimal 4,660. Hex 3BA4 equals (3  16 3 ) + (11  16 2 ) + (10  16 1 ) + (4  16 0 ), or decimal 15,268. Horner's rule: (((3  16) + 11)  16) + 10 )  16) + 4

31 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 31 Powers of 16 Used when calculating hexadecimal values up to 8 digits long:

32 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 32 Converting Decimal to Hexadecimal decimal 422 = 1A6 hexadecimal Verify the value of 1A6 by Horner's rule?

33 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 33 Hexadecimal Addition Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit. 3628286A 4245584B 786D80B5 1 1 21 / 16 = 1, rem 5 Important skill: Programmers frequently add and subtract the addresses of variables and instructions.

34 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 34 Hexadecimal Subtraction When a borrow is required from the digit to the left, add 16 (decimal) to the current digit's value: C675 A247 242E 11 16 + 5 = 21 Practice: The address of var1 is 00400020. The address of the next variable after var1 is 0040006A. How many bytes are used by var1?

35 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 35 Signed Integers The highest bit indicates the sign. 1 = negative, 0 = positive If the highest digit of a hexadecimal integer is > 7, the value is negative. Examples: 8A, C5, A29D, B1234567 What’s this?-10 +10

36 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 36 Forming the Two's Complement Negative numbers are stored in two's complement notation Represents the additive Inverse Note that 00000001 + 11111111 = 00000000 Two's Complement operation is reversible. Two's Complement of 11111111 is 00000001

37 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 37 Binary Subtraction When subtracting A – B, convert B to its two's complement Add A to (–B)0 0 0 0 1 1 0 0 –0 0 0 0 0 0 1 11 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 Practice: Subtract 0101 from 1001.

38 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 38 Learn How To Do the Following: Form the two's complement of a hexadecimal for (-27197 d ) 6A3D h Convert signed binary to decimal 11110000 b Convert signed decimal to binary -43 d : Convert signed decimal to hexadecimal -43 d Convert signed hexadecimal to decimal D5 h :  95C2 h +1  95C3 h  -16 d (43 d  00101011 b, 11010100 b +1) 11010101 b  D5 h (2A h +1 = 2B h ) -43 d

39 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 39 Ranges of Signed Integers The highest bit is reserved for the sign. This limits the range: Practice: What is the largest positive value that may be stored in 20 bits? Why?10000000 - 01111111

40 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 40 Character Storage Character sets Standard ASCII(0 – 127) Extended ASCII (0 – 255) ANSI (0 – 255) Unicode (0 – 65,535) Null-terminated String Array of characters followed by a null byte Using the ASCII table Back inside cover of book Control characters, Front inside cover of book http://en.wikipedia.org/wiki/ASCII

41 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 41 Numeric Data Representation next: Boolean Operations Pure binary: binary integer can be calculated directly, 01000001b, 41h, 65, 101o ASCII binary string of digits: "01000001" ASCII decimal string of digits: "65" ASCII hexadecimal string of digits: “41“ ASCII octal string of digits: “101"

42 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 42 What's Next Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations

43 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 43 Boolean Operations NOT AND OR Operator Precedence Truth Tables

44 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 44 Boolean Algebra Based on symbolic logic, designed by George Boole http://en.wikipedia.org/wiki/George_Boole Boolean expressions created from: NOT, AND, OR

45 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 45 NOT Inverts (reverses) a boolean value Truth table for Boolean NOT operator: Digital gate diagram for NOT:

46 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 46 AND Truth table for Boolean AND operator: Digital gate diagram for AND:

47 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 47 OR Truth table for Boolean OR operator: Digital gate diagram for OR:

48 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 48 Operator Precedence Examples showing the order of operations:

49 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 49 Truth Tables (1 of 3) A Boolean function has one or more Boolean inputs, and returns a single Boolean output. A truth table shows all the inputs and outputs of a Boolean function Example:  X  Y

50 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 50 Truth Tables (2 of 3) Example: X   Y

51 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 51 Truth Tables (3 of 3) Example: (Y  S)  (X   S) Two-input multiplexer http://en.wikipedia.org/wiki/Multiplexer

52 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 52 Summary Assembly language helps you learn how software is constructed at the lowest levels Assembly language has a one-to-one relationship with machine language Each layer in a computer's architecture is an abstraction of a machine layers can be hardware or software Boolean expressions are essential to the design of computer hardware and software

53 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 53 54 68 65 20 45 6E 64 What do these numbers represent?


Download ppt "Assembly Language for x86 Processors 7 th Edition Chapter 1: Basic Concepts (c) Pearson Education, 2015. All rights reserved. You may modify and copy this."

Similar presentations


Ads by Google