# 6.1 day 1: Antiderivatives and Slope Fields Greg Kelly, Hanford High School, Richland, Washington.

## Presentation on theme: "6.1 day 1: Antiderivatives and Slope Fields Greg Kelly, Hanford High School, Richland, Washington."— Presentation transcript:

6.1 day 1: Antiderivatives and Slope Fields Greg Kelly, Hanford High School, Richland, Washington

First, a little review: Consider: then: or It doesn’t matter whether the constant was 3 or -5, since when we take the derivative the constant disappears. However, when we try to reverse the operation: Given:findWe don’t know what the constant is, so we put “C” in the answer to remind us that there might have been a constant.

If we have some more information we can find C. Given: and when, find the equation for. This is called an initial value problem. We need the initial values to find the constant. An equation containing a derivative is called a differential equation. It becomes an initial value problem when you are given the initial condition and asked to find the original equation.

Think – Pair – Share: (Try the problem for 2 minutes before discussing with your partner.) Find the particular solution to the equation to the right, whose graph passes through the point (1,0).

Initial value problems and differential equations can be illustrated with a slope field. Slope fields are mostly used as a learning tool and are mostly done on a computer or graphing calculator, but a recent AP test asked students to draw a simple one by hand.

Draw a segment with slope of 2. Draw a segment with slope of 0. Draw a segment with slope of 4. 000 010 00 00 2 3 10 2 112 204 0 -2 0-4

If you know an initial condition, such as (1,-2), you can sketch the curve. By following the slope field, you get a rough picture of what the curve looks like. In this case, it is a parabola.

Go to: and enter the equation as:Y= For more challenging differential equations, we will use the calculator to draw the slope field. (Notice that we have to replace x with t, and y with y1.) (Leave yi1 blank.) On the TI-89: Push MODE and change the Graph type to DIFF EQUATIONS. MODE Go to:Y= Press and make sure FIELDS is set to SLPFLD. I

Set the viewing window: Then draw the graph: WINDOW GRAPH

Be sure to change the Graph type back to FUNCTION when you are done graphing slope fields.

Integrals such as are called definite integrals because we can find a definite value for the answer. The constant always cancels when finding a definite integral, so we leave it out!

Integrals such as are called indefinite integrals because we can not find a definite value for the answer. When finding indefinite integrals, we always include the “plus C”.

Many of the integral formulas are listed on page 307. The first ones that we will be using are just the derivative formulas in reverse. On page 308, the book shows a technique to graph the integral of a function using the numerical integration function of the calculator (NINT). or This is extremely slow and usually not worth the trouble. A better way is to use the calculator to find the indefinite integral and plot the resulting expression.

To find the indefinite integral on the TI-89, use: The calculator will return: Notice that it leaves out the “+C”. Use and to put this expression in the screen, and then plot the graph. COPYPASTE Y=

[-10,10] by [-10,10] 

Download ppt "6.1 day 1: Antiderivatives and Slope Fields Greg Kelly, Hanford High School, Richland, Washington."

Similar presentations