Download presentation

1
**Arithmetic and Geometric Means**

OBJ: • Find arithmetic and geometric means

2
**Arithmetic means are the terms between two given terms of an arithmetic progression or sequence.**

For example, three arithmetic means between 2 and 18 in the progression below are 6, 10, and 14 since 2, 6, 10, 14, 18, is an arithmetic progression. 2, 6, 10, 14, 18, . . .

3
As shown in the example below, you can find any specified number of arithmetic means between two given numbers. EX: Find two arithmetic means between 29 and 8. 29, ____, ____, 8 an = a1 + (n – 1) d 8 = d -21 = 3d -7 = d 29, 22, 15, 8

4
As shown in the example below, you can find any specified number of arithmetic means between two given numbers. EX: Find the five arithmetic means between 30 and 21. 30,__,__,__,__,__, 21 an = a1 + (n – 1) d 21 = d -9 = 6d -1.5 = d 30, 28.5, 27, 25.5, 24, 22.5,21

5
As shown in the example below, you can find any specified number of arithmetic means between two given numbers. EX: Find the one arithmetic mean between 5 and 17. 5, ____, 17 an = a1 + (n – 1) d 17 = 5 + 2d 12 = 2d 6 = d 5, 11, 17

6
Since this is the same as the average of 5 and 17, it easier to use the formula: x + y. 2 which is called the arithmetic mean of the real numbers x and y. EX: Find the arithmetic mean of -8 and 22. 2 14 7

7
**Find the real number solution.**

125 r = -4 5

8
**Geometric means are the terms between two given terms of a geometric progression or sequence.**

For example, four geometric means between 3 and 96 in the progression below are 6, 12, 24, and 48 since 3, 6, 12, 24, 48, 96, is a geometric progression. 3, 6, 12, 24, 48, and

9
As shown in the example below, you can find any specified number of geometric means between two given numbers. EX: Find the two real geometric means between –3 and -3, ____, ____, 24 8 l = a •rn – 1 24 = -3 •r 3 -64 = r 3 -4 = r

10
As shown in the example below, you can find any specified number of geometric means between two given numbers. EX: Find three geometric means between 32 and 2. 32, ____, ____, ____, 2 l = a •rn – 1 2 = 32 •r4 1 = r4 16 ± 1 2

11
As shown in the example below, you can find any specified number of geometric means between two given numbers. EX: Find one geometric mean between 5 and 10 5, ____, 10 l = a •rn – 1 10 = 5 •r2 2 = r2 ±2

12
**The geometric mean (mean proportional) of the real numbers x and y (xy > 0) is**

xy or – xy . EX: Find the positive geometric mean of 4 and 8.

Similar presentations

Presentation is loading. Please wait....

OK

Objectives: Generate and describe sequences. Vocabulary:

Objectives: Generate and describe sequences. Vocabulary:

© 2018 SlidePlayer.com Inc.

All rights reserved.

By using this website, you agree with our use of **cookies** to functioning of the site. More info in our Privacy Policy and Google Privacy & Terms.

Ads by Google

Best ppt on sustainable development Ppt on new technology gadgets Ppt on solar energy conversion Download ppt on mind controlled robotic arms in medicine Ppt on hindu religion song Ppt on machine translation conference Ppt on call center management system Ppt on unified power quality conditioner Ppt on self development preschool Ppt on simple carburetor operation