Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rates of evolution. Quantifying evolutionary rates  the darwin 1 darwin is a change in the character by a factor of e in 1 million years Haldane 1949.

Similar presentations


Presentation on theme: "Rates of evolution. Quantifying evolutionary rates  the darwin 1 darwin is a change in the character by a factor of e in 1 million years Haldane 1949."— Presentation transcript:

1 Rates of evolution

2 Quantifying evolutionary rates  the darwin 1 darwin is a change in the character by a factor of e in 1 million years Haldane 1949. Evolution 3: 51-56. ln (x 2 ) – ln (x 1 ) d = t

3 Measuring evolutionary rates  the darwin  the haldane x2x2 h = g spsp x1x1 spsp (()) - S p = pooled standard deviation = SS 1 + SS 2 n 1 + n 2 - 2 g= number of generations separating the samples SS i = sum of squared deviations for sample i n i = sample size of sample i

4 Measuring evolutionary rates  the darwin  the haldane  specifying subscripts d x(a:b,c) x = p (phenotypic) or g (genetic) a= 1 (length), 2 (area) or 3 (volume) b= log 10 (years over which the change was measured) c = log 10 (years over which the rate is specified)

5 Measuring evolutionary rates  the darwin  the haldane  specifying subscripts d p(1:0.95,6.0) phenotypic length log 10 (9); period of 9 years log 10 (1000000); expressed over 1 million years

6 Measuring evolutionary rates  the darwin  the haldane  specifying subscripts h x(b) x = p (phenotypic) or g (genetic) b= log 10 (generations over which the change was measured)

7 Sources of information on evolutionary rates  artificial selection experiments

8 Rezende et al. 2006. J. Exp. Biol. 209: 115-127. House mouse – Mus musculus

9 Rezende et al. 2006. J. Exp. Biol. 209: 115-127. control select control select 36 generations control select

10 Rezende et al. 2006. J. Exp. Biol. 209: 115-127. control select control select 36 generations Distance run+137% Adult body mass -13.6% Fat content -24.5% Food intake +8% V O2max +13.2% Distance run+137% Adult body mass -13.6% Fat content -24.5% Food intake +8% V O2max +13.2%

11 Rezende et al. 2006. J. Exp. Biol. 209: 115-127.

12 Sources of information on evolutionary rates  artificial selection experiments  ‘natural’ experiments  allochronic and synchronic designs

13 Grant & Grant 1995. Evolution 49: 241-245. Medium ground finch – Geospiza fortis

14 1976

15 Geospiza fortis 200 400 600 800 1000 1200 1400 1975197619771978

16 0 2 4 6 8 10 12 1975197619771978 Jamaican fever plant - Tribulus cistoides

17 4 5 6 1975197619771978 Jamaican fever plant - Tribulus cistoides

18 Geospiza fortis 1981-1982 1976-1977 -0.500.5 weight wing length beak length beak depth beak width tarsus size -0.500.5 weight wing length beak length beak depth beak width tarsus size selection differential

19 1976 1983

20 Geospiza fortis 1981-1982 1976-1977 -0.500.5 1984-1985 weight wing length beak length beak depth beak width tarsus size -0.500.5 weight wing length beak length beak depth beak width tarsus size weight wing length beak length beak depth beak width tarsus size selection differential

21 Geospiza fortis 1976-1977 1984-1985 weight r = +32250 darwin ≈ +0.709 haldanes r = -11750 darwin ≈ -0.375 haldanes

22 Sources of information on evolutionary rates  artificial selection experiments  ‘natural’ experiments  allochronic and synchronic designs

23 House sparrow – Passer domesticus Johnston & Selander 1964. Science 144: 548-550.

24 1900 1933 1914 Bermuda Hawaii 1852  1962/3 (<111 generations)

25 Johnston & Selander 1964. Science 144: 548-550. 40 30 20 400500600700 Death Valley Vancouver Honolulu Mexico City Wavelength (m  )

26 Constantin Wilhelm Lambert Gloger (1803-1863)

27 Johnston & Selander 1964. Science 144: 548-550. 79 77 75 83 81 Edmonton Death Valley Lawrence

28 Johnston & Selander 1964. Science 144: 548-550. 32 25 26 30354045505560 30 28 Isophane

29 Mosquitofish – Gambusia affinis Stearns 1983. Am. Zool. 23: 65-76.

30 1905  1974 (140 generations)

31 Stearns 1983. Am. Zool. 23: 65-76. TraitStableFluct%diff FemalesAge at maturity (days)82.588.37 Length at maturity (mm)19.518.93 Growth rate0.00660.00718 Dry weight offspring (mg)1.001.1212 MalesAge at maturity (days)72.684.016 Length at maturity (mm)17.018.06 Growth rate0.0200.01811

32 Blackcap – Sylvia atricapilla Berthold et al. 1992. Nature 360: 668-670.

33 1960s  1990s (20 generations)

34 Guppy – Poecilia reticulata Reznick et al. 1997. Science 275: 1934-1937.

35 11 years (18.1 generations) waterfall high predation community low predation community Crenicichla alta Rivulus hartii

36 Reznick et al. 1997. Science 275: 1934-1937. TraitControlExp.%diff FemalesAge at maturity (days)85.693.59 Mass at maturity (mg)162.3189.217 MalesAge at maturity (days)48.658.220 Mass at maturity (mg)67.576.113

37 Brown anole - Anolis sagrei Losos et al. 1997. Nature 387: 70-73.

38 1977-81  1991 (13 generations)

39 Losos et al. 1997. Nature 387: 70-73. 5.0 2.0 2.21 2.24 2.25 3.0 Relative hindlimb length (mm) 4.0 2.26 2.22 2.23 Staniel Cay

40 Flat periwinkle - Littorina obtusata Seeley 1986. Proc. Natl. Acad. Sci. USA 83: 6897-6901. Common shore crab - Carcinus maenas

41 Seeley 1986. Proc. Natl. Acad. Sci. USA 83: 6897-6901. 1871  1982 Appledore island, 1871Appledore island, 1982

42 Seeley 1986. Proc. Natl. Acad. Sci. USA 83: 6897-6901. 60 1871 1982-84 1.6 Ln shell width 1.8 2.0 2.2 0 1

43 Holy grass - Anthoxanthum odoratum Snaydon & Davies 1972. Evolution 26: 390-405.

44 Rothamsted Park Grass Experiment 1856-now

45 Holy grass - Anthoxanthum odoratum Snaydon & Davies 1972. Evolution 26: 390-405. 1863  1960-70s - plant height - disease resistance - tolerance of pH - tolerance of Al

46 2 1 Transect section 3 4 5 6 234 567891011121314151617181920 1234 567891011121314151617181920 pH=5.2 pH=3.9

47 Sources of information on evolutionary rates  artificial selection experiments  ‘natural’ experiments  allochronic and synchronic designs  divergence and evolution

48 200 150 100 50 0 time A B evolution rate A = 1 evolution rate B = 0 divergence rate = 1

49 200 150 100 50 0 time A B evolution rate A = 1 evolution rate B = 1 divergence rate = 0

50 200 150 100 50 0 time A B evolution rate A = 1 evolution rate B = -1 divergence rate = 2

51 Sources of information on evolutionary rates  artificial selection experiments  ‘natural’ experiments  allochronic and synchronic designs  divergence and evolution  phenotypic and genetic change

52 Sources of information on evolutionary rates  artificial selection experiments  ‘natural’ experiments  allochronic and synchronic designs  divergence and evolution  phenotypic and genetic change  intrapolation and extrapolation

53 200 150 100 50 0 time actual rate = 1, -1 inferred rate = 0

54 200 150 100 50 0 time actual rate = 2, 0 inferred rate = 1

55 200 150 100 50 0 time actual rate = ?,?,?,… inferred rate = 1

56 200 150 100 50 0 time actual rate = 1, 0 inferred rate = 1

57 Sources of information on evolutionary rates  artificial selection experiments  ‘natural’ experiments  paleontological record

58

59 Dinosaurs in the Paleobiology Database (www.paleodb.org)

60 MacFadden 1992. Fossil horses. Cambridge Univ. Press 500 400 300 200 100 504030201060 Million years ago Hyracotherium Mesohippus Merychippus Equus Nannippus

61 MacFadden 1992. Fossil horses. Cambridge Univ. Press M1 M2 M3 M4

62 MacFadden 1992. Fossil horses. Cambridge Univ. Press Species pair  t (Myr) M1 (d)M2 (d)M3 (d)M4 (d) Equus simplicidens – E. complicatus2.00.000-0.0140.1150.054 Merychippus isonesis – Pliohippus permix2.50.0720.1010.1850.180 Epihippus gracilis – Mesohippus bairdii140.0230.0370.0320.035 …2-140.000- 0.157 0.005- 0.146 0.012- 0.185 0.000- 0.247

63 Threespine stickleback – Gasterosteus doryssus Bell 2006. Paleobiology 32: 562-577.

64 0.6 Time (generations) 0.8 1.0 1.2 1.4 80000600040002000 Bell 2006. Paleobiology 32: 562-577.

65 Comparing evolutionary rates  faster evolution in shorter intervals

66 + 0.27 time 012345678 character 0 2 4 6 8 10 -0.60 +2.2 +0.25

67 evolutionary rate (darwin)time interval nrangegeom. meanrangegeom. mean Selection experiments812000-200000587001.5-10yr3.7yr Colonization1040-7970037070-300yr170yr Post-pleistocene mammals460.11-32.03.71000-10000yr8200yr Fossil animals3630-26.20.088000yr-350Myr3.8Myr Fossil invertebrata1350-3.70.070.3-350Myr7.9Myr Fossil vertebrata2280-26.20.088000yr-98Myr1.6Myr All combined5210-2000000.731.5yr-350Myr0.2Myr Gingerich 1983. Science 222: 159-161.

68 Comparing evolutionary rates  faster evolution in shorter intervals  does natural selection suffice to explain fossil change?

69 evolutionary rate (darwin)time interval nrangegeom. meanrangegeom. mean Selection experiments812000-200000587001.5-10yr3.7yr Colonization1040-7970037070-300yr170yr Post-pleistocene mammals460.11-32.03.71000-10000yr8200yr Fossil animals3630-26.20.088000yr-350Myr3.8Myr Fossil invertebrata1350-3.70.070.3-350Myr7.9Myr Fossil vertebrata2280-26.20.088000yr-98Myr1.6Myr All combined5210-2000000.731.5yr-350Myr0.2Myr Gingerich 1983. Science 222: 159-161.

70 Comparing evolutionary rates  faster evolution in shorter intervals  does natural selection suffice to explain fossil change?  does natural selection suffice to explain radiation?

71

72 Geospiza fortis 1976-1977: beak depth +5%

73 Geospiza magnirostrisGeospiza fortis 23 bouts

74 volcanic island chain crust asthenosphere mid-ocean ridge lithosphere

75 4 Mya 1-0.5 Mya 570 000 ya

76 Punctuated equilibrium vs phyletic gradualism  Eldredge & Gould’s original idea character phyletic gradualism punctuated equilibrium

77 Punctuated equilibrium vs phyletic gradualism  Eldredge & Gould’s original idea character punctuated equilibrium stasis stabilizing selection constraint lack of genetic variation lack of expressed genetic variation developmental canalization

78 Punctuated equilibrium vs phyletic gradualism genotype 1 genotype 2 other extremeenvironment extreme Phenotype

79 Punctuated equilibrium vs phyletic gradualism  Eldredge & Gould’s original idea  Gradualism and constant rate

80 Punctuated equilibrium vs phyletic gradualism  Eldredge & Gould’s original idea  Gradualism and constant rate  Valley crossing: macromutations and hopefull monsters character punctuated equilibrium revolution allopatric speciation genetic revolution

81 Evening primrose - Oenothera lamarckiana Hugo de Vries (1848-1935)

82 Richard Goldschmidt (1878-1958) Lymantria

83 wild type antennapedia proboscipedia/ antennapedia

84

85 Punctuated equilibrium vs phyletic gradualism  Eldredge & Gould’s original idea  Gradualism and constant rate  Valley crossing: macromutations and hopefull monsters  Examining the facts  Paleontological evidence

86 Cheetham 1986. Paleobiology 12: 199-202. Bryozoa

87 Cheetham 1986. Paleobiology 12: 199-202. M. auriculatum M. colligatumM. lacrymosumM. new species Metrarabdotos Bryozoa (Metrarabdotus) of the Miocene-Pliocene period (100 populations; 1000 specimens; 46 characteristics)

88 Cheetham 1986. Paleobiology 12: 199-202. morphological differentiation

89 Williamson 1981. Nature 293: 437-443. modern lake Mutela Cenozoic molluscs of the Turkana basin (13 species, 3300 specimens) Mutela CaelaturaBellamya

90 Williamson 1981. Nature 293: 437-443. modern lake freshwater deposits

91 Williamson 1981. Nature 293: 437-443. modern lake freshwater deposits

92 Van Bocxlaer et al. 2007. Evolution 62: 511-520 freshwater deposits arid relatively wet markedly wet

93 Sheldon 1987. Nature 330: 561-563. Ordovician trilobites from central Wales (~15000 specimens)

94 Sheldon 1987. Nature 330: 561-563. number of pygidial ribs time

95 Punctuated equilibrium vs phyletic gradualism  Eldredge & Gould’s original idea  Gradualism and constant rate  Valley crossing: macromutations and hopefull monsters  Examining the facts  Paleontological evidence  Neontological evidence

96 A B C D gradual evolutionA and B are more similar than C and D punctuated equilibriumA and B are as similar as C and D

97 gradual evolutiongenetic variation similar in rich and poor clades punctuated equilibriumgenetic variation greater in rich clades

98 gradual evolutionmodel with unit branch lenghts fits worse punctuated equilibriummodel with unit brach lenghts fits better Moeers et al. 1999. Am. Nat. 154: 249-259.

99 plumage coloration unison calls sternum and keel anatomy

100 Moeers et al. 1999. Am. Nat. 154: 249-259. Grus japonensis Grus americana Grus grus Grus monachus Grus nigricollis Grus leucogeranus Grus antigone Grus vipio Grus rubicunda Grus canadensis Bugeranus carunculatus Anthropoides paradisea Anthropoides virgo

101 Moeers et al. 1999. Am. Nat. 154: 249-259. traitmodel performance plumage colorgradual = speciational < non-historical unison callgradual > speciational > non-historical anatomygradual = speciational > non-historical

102 Whittall & Hodges 2007. Nature 477: 706-710. Comet orchid - Angraecum sesquipedale … P.S. I shall be very glad indeed to see an Arethusa & then I must stop. I have just received such a Box full from M r Bateman with the astounding Angræcum sesquipedalia with a nectary a foot long— Good Heavens what insect can suck it— I will write about Dimorphism. C.R. Darwin to J.D. Hooker, 25 January 1862

103 Whittall et al. 2007. Nature 477: 706-710. Xanthopan morgani ssp. praedicta

104 Whittall et al. 2007. Nature 477: 706-710. spur and tongue length fitness spur length time

105 Whittall et al. 2007. Nature 477: 706-710. spur and tongue length fitness spur length time

106 Whittall et al. 2007. Nature 477: 706-710.

107 BM-model: AIC=51.93 3PEAKSmodel: AIC=26.90 gradual < punctuated


Download ppt "Rates of evolution. Quantifying evolutionary rates  the darwin 1 darwin is a change in the character by a factor of e in 1 million years Haldane 1949."

Similar presentations


Ads by Google