Presentation is loading. Please wait.

Presentation is loading. Please wait.

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Prof.dr.ing.Florin Ciuprina Materiale electrotehnice noi.

Similar presentations


Presentation on theme: "Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Prof.dr.ing.Florin Ciuprina Materiale electrotehnice noi."— Presentation transcript:

1 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Prof.dr.ing.Florin Ciuprina Materiale electrotehnice noi Nanodielectrici

2 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Structura disciplinei CapitolulConţinutul 1Fenomene in materialele electrotehnice 1.1. Conductia electrica 1.2. Polarizarea electrica 1.3. Magnetizarea materialelor 1.4. Pierderi in materialele electrotehnice 2Materiale conductoare noi 2.1. Materiale conductoare clasice 2.2. Materiale supraconductoare 2.3. Conductori organici si nanotuburi de carbon 2.4. Materiale pentru realizarea de memristori 2.5. Aplicatii moderne ale materialelor conductoare 3Materiale semiconductoare noi 3.1. Materiale semiconductoare clasice 3.2. Polimeri semiconductori 3.3. Materiale semiconductoare nanostructurate 3.4. Aplicatii moderne (celule solare, microprocesoare de inalta frecventa, ecrane TV, laseri) 4Materiale dielectrice noi 4.1. Evolutia materialelor dielectrice 4.2. Straturi subtiri 4.3. Nanodielectrici 4.4. Oxizi metalici 4.5. Aplicatii 5Materiale magnetice noi 5.1. Evolutia materialelor magnetice 5.2. Materiale magnetice amorfe 5.3. Materiale magnetice nanostructurate (nanocristaline, organice) 5.4. Fire si filme subtiri din materiale magnetice 5.5. Aplicatii moderne (miezuri magnetice, memorii, hard-discuri, carduri magnetice)

3 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

4 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

5 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici 1994: Symbolic birth of Nanodielectrics: John Lewis published the paper “Nanometric Dielectrics” in IEEE Transactions on Dielectrics and Electrical Insulation Nanodielectrics ≈ Polymer nanocomposites with dielectric properties: polymers (PA, PE, PP, PVC, epoxy resins, silicone rubbers) + nano-fillers (LS, SiO 2, TiO 2, Al 2 O 3 ) * 1 to 100 nm in size, * 1 to 10 wt% in content * homogeneously dispersed in the polymer matrix. 2002: First experimental data on nanometric dielectrics. 2002-2008: Articles in the field reported that  nano-filler addition has the potential of improving the electrical, mechanical and thermal properties as compared to the neat polymers;  polymer nanocomposites are increasingly desirable as coatings, structural and packaging materials in automobile, civil, aerospace and electrical engineering. 2006-2008: Project CEEX- PoNaDIP

6 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Design & Realizing Characterization Modeling Structure-Property Relationship Steps of the research

7 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Design & realizing Research at UPB-ELMAT:  14 combinations polymer – nanofiller  Plane samples 10 X 10 cm 2, thickness ≤ 1 mm  Nanofillers:1 to 100 nm in size, 1 to 10 wt% in content, and homogeneously dispersed in the polymer matrix POLYMER thermoplastic thermoset NANOFILLER organic inorganic

8 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Design & realizing Nanocomposites investigated  PP, PVC and LDPE with SiO 2 nanoparticles of 15 nm diameter  PP, PVC and LDPE with TiO 2 nanoparticles of 15 nm diameter  PP, PVC and LDPE with Al 2 O 3 nanoparticles of 40 nm diameter  nanofillers content: 2, 5 and 10 wt%.  Manufacturing by direct mixing method  Samples for electrical tests: plaques of square shape (10 x 10 cm 2 ) having the thickness of 0.5 mm. Installation for nanocomposite manufacturing

9 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

10 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Nanostructure SEM at ICECHIM LDPE - SiO 2 Characterization

11 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Characterization Electrical properties Dielectric Spectroscopy at UPB/ELMAT  real part of the permittivity ( )  loss tangent (tan δ)  dielectric spectroscopy: Novocontrol ALPHA-A Analyzer (3) in combination with an Active Sample Cell ZGS (4) and a Temperature Control System Novotherm (5)  frequency range 10 -3 – 10 6 Hz

12 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for PP nanocomposites with Al 2 O 3, SiO 2 and TiO 2 fillers at T = 300 K

13 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for PVC nanocomposites with Al 2 O 3, SiO 2 and TiO 2 fillers at T = 300 K

14 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for LDPE nanocomposites with Al 2 O 3, SiO 2 and TiO 2 fillers at T = 300 K

15 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for LDPE - Al 2 O 3 nanocomposites, for different filler concentration, at T = 300 K

16 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Characterization Electrical properties Absorption-Resorption Currents at UPB/ELMAT Resistivity  : Keithley 6517 Electrometer in combination Keithley 8009 Test Fixture

17 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Electrical properties Absorption-Resorption Currents at UPB/ELMAT Characterization

18 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Electrical properties Resistivity of LDPE nanocomposites at UPB/ELMAT Characterization Material Relative volume resistivity at 10 V Relative volume reisistivity at 500 V Unfilled LDPE 11 LDPE with 5 wt% nano-SiO 2 39.390.54 LDPE with 5 wt% nano-Al 2 O 3 6.080.19 LDPE with 5 wt% nano-TiO 2 4.090.72

19 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Characterization Mechanical properties at ICECHIM  LDPE – SiO 2 and LDPE – Al 2 O 3 nanocomposites  According to ISO 527 on specimens type IB (5 specimens for each test) with 50 mm/min for tensile strength and 2 mm/min for modulus of elasticity.

20 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

21 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Ideas multi-core model (Tanaka) Modeling Numerical model at UPB/ELMAT

22 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici 3D Model nanoparticle matrix elementary capacitor Sample features: - thickness 1 mm - diameter of the nanoparticle 40 nm - thickness if the interface 10 nm - filler content 5% - relative permittivities: nanoparticle/interface/matrix = 10/6/2.2 interface Modeling Numerical model at UPB/ELMAT

23 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Electrostatic field div (  grad V) = 0 V – electric scalar potential  – electric permittivity Modeling Numerical model at UPB/ELMAT

24 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Computational domain – in FLUX 3D Main data of the numerical model: - dimension of the elementary cube 120 nm along each axis - nanoparticle diameter 40 nm - thickness of the interface 10 nm - concentration of nanoparticles 5% - relative electric permittivities: nanoparticle/interface/matrix = 10/6/2.2 - applied voltage 0.02 V Modeling Numerical model at UPB/ELMAT

25 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Descretization mesh - finite element method Size of the mesh: - 6784 nodes - 41770 volume finite elements -- tethrahedral elements Modeling Numerical model at UPB/ELMAT

26 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Computation of the equivalent permittivity 1) Computation of the electric energy stored in the material samples: 2) Computation of the capacitance of the elementar capacitor by using two different methods: 3) Evaluation of the equivalent rel. electric permittivity  r eq : Modeling Numerical model at UPB/ELMAT

27 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Numerical results Electric scalar potential – color map Without nanoparticles With nanoparticles Modeling Numerical model at UPB/ELMAT

28 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Numerical results Electric field strength – color map Without nanoparticles With nanoparticles Modeling Numerical model at UPB/ELMAT

29 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Parametric study filler content fc diameter of the nanoparticle dn thickness of the interface ti relative permittivity of the polymer matrix  rm relative permittivity of the interface  ri relative permittivity of the nanofiller  rn Modeling Numerical model at UPB/ELMAT

30 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. interface permittivity  re = f(  ri ) fc = 5% dn = 40 nm ti = 10 nm  rm = 2.2  rn = 10  ri = 3; 4; 5; 6; 7; 8 Modeling Numerical model at UPB/ELMAT

31 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. the thickness of the interface layer  re = f(ti) fc = 5% dn = 40 nm ti = 5; 10; 15; 20 nm  vi = 0  rm = 2.2  rn = 10  ri = 4 Modeling Numerical model at UPB/ELMAT

32 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. the diameter of the nanoparticle  re = f(dn) fc = 5% dn = 10; 20; 30; 40; 50 nm ti = 10 nm  rm = 2.2  rn = 10  ri = 4 Modeling Numerical model at UPB/ELMAT

33 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. nanoparticle permittivity  re = f(  rn ) fc = 5% dn = 40 nm ti = 10 nm  rm = 2.2  rn = 4; 10  ri = 2.2 Modeling Numerical model at UPB/ELMAT

34 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Particle agglomeration Modeling Numerical model at UPB/ELMAT

35 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Particle agglomeration + isolated particles Modeling Numerical model at UPB/ELMAT

36 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

37 Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Nanodielectrici Nanocomposite applications in Electrical engineering at ETN-EE  Manufacturing and testing of coil holders  Selected materials: LDPE + Al 2 O 3 and LDPE + SiO 2 with 2% filler content.  Coil holders made from selected nanocomposites have better behaviour as compared with those from the neat polymer (dielectric strength, mecanical properties and, obviously, flame retardancy)


Download ppt "Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Prof.dr.ing.Florin Ciuprina Materiale electrotehnice noi."

Similar presentations


Ads by Google