Download presentation
Presentation is loading. Please wait.
Published byCleopatra Ford Modified over 9 years ago
1
Chemical thermodynamics II. Medical Chemistry László Csanády Department of Medical Biochemistry
2
Entropy change Consequence: Some processes happen spontaneously, others do not. Let us define a quantity which reflects randomness: Entropy (S): S should be a state function ( S = S final - S initial ) S should be an extensive property (S= k S k ) Experience: heat does not flow from a cold towards a hot object energy tends to become dissipated into less ordered forms ("disorder" increases)
3
Entropy change "more randomness" is generated by heat absorption at lower temperature: S~1/T Let us define entropy through its change: Entropy change: S=q/T (J/˚K) How should we define S? Experience: heat absorption increases randomness in a system: S~q
4
system surroundings: T=const. heat (q>0) Consider a process in which heat flows between a system and its surroundings. What can we say about S sys and S sur under various conditions? Entropy change system surroundings: T=const. heat (q<0) endothermic processexothermic process
5
time t start t end T temperature T system T surroundings S for reversible processes 1. Reversible processes: Slow processes during which the system and its surroundings remain at quasi-equilibrium at all times. Thus, thermal equilibrium is maintained (no temperature inhomogeneities arise). system surroundings Entropy is only redistributed!
6
TkTk S sys;k =q k /T k system surroundings time t start t end T temperature T system T surroundings 2.1. Spontaneous processes: endothermic (q>0) S for spontaneous processes 2. Spontaneous processes (irreversible): During spontaneous processes system and surroundings fall out of equilibrium temporarily. Temperature inhomogeneities arise. Entropy is created!
7
TkTk S sys;k =q k /T k system surroundings time t start t end T temperature T system T surroundings S for spontaneous processes 2. Spontaneous processes (irreversible): During spontaneous processes system and surroundings fall out of equilibrium temporarily. Temperature inhomogeneities arise. 2.2. Spontaneous processes: exothermic (q<0) Entropy is created!
8
The second law of thermodynamics For a spontaneous process the total entropy of the system plus its surroundings always increases: S total > 0 (spontaneous process) Spontaneous processes are irreversible. For reversible processes the total entropy does not change: S total = 0 (reversible process) Or: S system > q/T Or: S system = q/T
9
For evaporation: The third law and absolute entropy For a perfectly crystalline pure substance at 0 ˚K S=0 (perfect order). Calculate absolute entropies (S): take 1 mole substance, add heat in small reversible steps to change its temperature from T to T+dT: TT+dT Add S for phase transitions: For fusion:
10
The standard (absolute) entropy (S˚) of a substance is the entropy value of 1 mol of the substance in its standard state. (Liquids, solids: p=1 atm. Gases: partial p =1 atm. Solutions: c=1M. Usually T=25 o C.) Standard entropies Substance S˚(J/(mol˚K)) C(graphite) 5.7 H 2 (gas) 130.6 CH 4 (gas) 186.1 Standard entropy change for a reaction ( S˚): the entropy change for a reaction in which reactants in their standard states yield products in their standard states. S˚ = S˚ final – S˚ initial (S is a state function) S˚ = S˚(products) - S˚(reactants)
11
Standard entropies General rules of thumb: S is positive for reactions in which a molecule is broken into smaller molecules there is an increase in moles of gas solid changes to liquid or gas liquid changes to gas Note: " S˚ f " is zero for C(s) and H 2 (g). Example: calculate "standard entropy of formation" for methane: C(s)+2 H 2 (g) CH 4 (g) S˚(J/(mol˚K)): 5.7 2·130.6 186.1 " S˚ f " (CH 4 (g)) = [186.1-(5.7+2·130.6)] J/(mol˚K) = = -80.8 J/(mol˚K)
12
Gibbs free energy Focusing on the system, the criterion for spontaneity (second law) at constant pressure can be written as S > q P /T = H/T (both S and H refer to the system). Or: 0 > H - T S (spontaneous process) Let us define a new quantity: Gibbs free energy (G): G = H - TS At constant p and T the change in free energy of the system determines the spontaneity of the process: G = H - T S G < 0 (spontaneous process)Therefore: and 0 = H - T S (reversible process) G = 0 (reversible process)and
13
G = H - TS = (U + pV) - TS Gibbs free energy Interpretation of G: the sign of G determines spontaneity, but what is the physical meaning of G? (Compare: H is heat, S is change in disorder...) G is the maximum non-volumetric (osmotic, electric) work that can be gained from a process at constant p and T. This requires quasi-equilibrium conditions. G = U - T S = (q + w) - T S If p, V, and T are constant: Quasi-equilibrium: q=T S G = w w system = -w = | G| Irreversible: q<T S G < w w system = -w < | G|
14
Standard free energy of formation ( G˚ f ): the free energy change that occurs when 1 mol of a substance in its standard state (T=25 o C, p=1atm) is formed from its elements in their reference forms. Standard free energy change Standard free energy change ( G˚): the free energy change for a reaction in which reactants in their standard states yield products in their standard states. (Liquids, solids: p=1 atm. Gases: partial p =1 atm. Solutions: c=1M. Usually T=25 o C.) Substance G˚ f (kJ/mol) Reaction of formation. water -237 H 2 (g)+1/2 O 2 (g) H 2 O(l) methane -50 C(s)+2 H 2 (g) CH 4 (g) Note: CH 4 : G˚ f = H˚ f -T S˚ f = -74 kJ/mol - 298˚K·(-80.8 J/(mol˚K)) = -50 kJ/mol
15
Standard free energy change Calculation of standard free energy change for a reaction ( G˚): G˚ = G˚ f (products) - G˚ f (reactants) Example: calculate G˚ for combustion of ethanol C 2 H 5 OH(l)+3 O 2 (g) 2 CO 2 (g) + 3 H 2 O (l) G˚ f (kJ/mol): -175 0 -394 -237 G˚ = [2· (-394)+3·(-237) -1·(-175) - 3·0] kJ/mol = = -1324 kJ/mol The reaction is spontaneous under standard conditions.
16
G for non-standard conditions Dependence of free energy on temperature At a first approximation H and S do not change with temperature. To get G˚ at some temperature (T) other than 25 o C (298 o K) use the approximation: G˚ T H˚ 298 - T· S˚ 298 The signature of H˚ and S˚ determines temperature dependence of spontaneity: >0 >0 spontaneous at high T melting, vaporization H˚ S˚ T-dependence Example. <0 <0 spontaneous at low T freezing, condensation 0 spontaneous at all T C 6 H 12 O 6 +6O 2 6CO 2 +6H 2 O >0 <0 nonspontaneous at all T 3O 2 2O 3
17
G for non-standard conditions Dependence of free energy on concentration G of a substance in solution depends on its concentration: a high concentration means a potential to do osmotic work. free energy of substance in solution ("chemical potential") free energy of substance in a 1M solution actual concentration of substance in solution
18
dW= – (V)·dV G for non-standard conditions m·g= ·A ViVi VfVf ii ff V Dependence of free energy on concentration G of a substance in solution depends on its concentration: a high concentration means a potential to do osmotic work. What is the maximum, reversible, work done by 1 mol dissolved substance while the solution volume expands from V i =1liter to V f due to osmosis? Dependence of free energy on concentration G of a substance in solution depends on its concentration: a high concentration means a potential to do osmotic work.
19
G for non-standard conditions Dependence of free energy on concentration G of a substance in solution depends on its concentration: a high concentration means a potential to do osmotic work. free energy of substance in solution ("chemical potential") free energy of substance in a 1M solution actual concentration of substance in solution
20
G of a reaction under non-standard conditions Consider the reaction A+B C+D Can we predict whether the reaction will be spontaneous in the written direction even if the actual concentrations |A|, |B|, |C|, and |D| are arbitrary (not 1 M)? Q: reaction quotient G for non-standard conditions
21
We have shown: G = G˚+ RT·lnQ G and the equilibrium constant At equilibrium: Q = K (equilibrium constant) G = 0 G˚ = – RT·lnK K = e – G˚/(RT) If Q>K G>0 reaction not spontaneous as written ("endergonic") (spontaneous in the reverse direction) Thus: 0 = G˚+ RT·lnK If Q<K G<0 reaction is spontaneous as written ("exergonic")
22
G and the equilibrium constant G˚ = – RT·lnK = –5.9 kJ/mol · lgK If G˚ 1 K>10 at equilibrium [B]/[A]>10 A simple rule of thumb At body temperature: 2.576 kJ/mol2.303·lgK Consider the simple process A B If G˚>+5.9 kJ/mol lgK<–1 K<0.1 at equilibrium [B]/[A]<0.1 If –5.9 kJ/mol< G˚=+5.9 kJ/mol –1<lgK<1 0.1<K<10 at equilibrium [A] and [B] are comparable
23
Thermodynamic coupling How does the body make endergonic processes happen? What happens to energy released in exergonic processes? A C G A C >0 endergonic doesn't happen B D A C G A+B C+D = = G A C + G B D <0 The coupled reaction is spontaneous, less heat is released. G B D <<0 exergonic B D G B D released as heat heat B D A C
24
G =- 48 kJ/mol ATP ADP+P Thermodynamic coupling ATP ADP + P i G˚=-30.5 kJ/mol In the cell: [ATP]=5mM, [ADP]=1mM, [P i ]=5mM G -48 kJ/mol glucose+6O 2 6CO 2 +6H 2 O 32 ADP+32 P i 32 ATP G =-2866 kJ/mol gl+6O 2 6CO 2 +6H 2 O G = + 1536 kJ/mol 32(ADP+P) 32 ATP G =-1330 kJ/mol coupled heat ATP ADP + P i pyruvate+CO 2 oxalo- acetate G = + 34 kJ/mol pyr+CO 2 OA G =-14 kJ/mol coupled heat ATP hydrolysis is highly exergonic, ATP synthesis is endergonic!
25
Back to the body... ATP ADP precursors macromolecules mechanical work muscle heat food CO 2 +H 2 O
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.