Download presentation
Published byJeffry McCoy Modified over 9 years ago
1
Chapter 10. Step-Reaction and Ring-Opening Polymerization
10.1 Introduction Chapter 10. Step-Reaction and Ring-Opening Polymerization 10.2 Step-reaction polymerization---Kinetics 10. 3 Stoichiometric Imbalance. 10. 4 Molecular weight Distribution 10. 5 Network Step Polymerization 10. 6 Step-Reaction Copolymerization. 10. 7 Step polymerization Techniques. 10. 8 Dendritic Polymers. 10. 9 Ring-opening polymerization. POLYMER CHEMISTRY
2
10.1 Introduction A. Characteristics of step-reaction polymers.
a. Polymers containing functional group in backbones b. Synthesizing dendritic polymers B. Examples of commercialized step-reaction polymers. Note) Table 10.1 POLYMER CHEMISTRY
3
POLYMER CHEMISTRY
4
POLYMER CHEMISTRY
5
10.2 Step-reaction polymerization---Kinetics
A. Types of monomer a. AB type b. AA and BB type c. Three functional group for crosslinked polymers POLYMER CHEMISTRY
6
10.2 Step-reaction polymerization---Kinetics
B. Condensation of difunctional monomers. a. b. POLYMER CHEMISTRY
7
C. Kinetics of step-polymerization.
a. Assumption : Independence on chain length. b. Rate equation and 2 Integration Combining Carothers equation. POLYMER CHEMISTRY
8
C. Kinetics of step-polymerization.
c. Polyesterification : self-acid catalyzed reaction. Integration Combining Carothers equation. POLYMER CHEMISTRY
9
10. 3 Stoichiometric Imbalance.
A. Chain length control. a. High molecular weight. b. Oligomers for free polymer. 1) Epoxy oligomer. 2) Unsaturated polyester. 3) Polyamide B. Preparing methods for oligomers. a. Quenching : unsaturated polyester. b. Stoichiometric imbalance : epoxy resin. c. Addition of monofunctional reactant. POLYMER CHEMISTRY
10
10. 3 Stoichiometric Imbalance.
C. Modification of Carothers equation. a. parameter r : stoichiometric imbalance. , : initial unreacted groups. , : unreacted group. if , then : Carothers equation. if , then
11
10. 4 Molecular weight Distribution
A. Conversion and Nx
12
10. 4 Molecular weight Distribution
B. Conversion and Wx C. Polydispersity index POLYMER CHEMISTRY
13
POLYMER CHEMISTRY
14
10. 5 Network Step Polymerization
A. Greater than two functionality polymers. a. Alkyd-type polyester : b. Phenol-formaldehyde resin : c. Melamine-formaldehyde resin :
15
10. 5 Network Step Polymerization
B. Gelatin : High conversion of greater than two functionality. a. Gel point : onset of gelatin. sudden increase in viscosity. change from liquid to gel. bubbles no longer rising. impossible stirring. POLYMER CHEMISTRY
16
10. 5 Network Step Polymerization
C. Gel point conversion. : critical reaction conversion. : average functionality. POLYMER CHEMISTRY
17
10. 5 Network Step Polymerization
D. Examples of gel point conversion. 3mol of 1 2mol of 4 Gel point conversion : 77% (Experiment) 83% (Calculate) POLYMER CHEMISTRY
18
10. 6 Step-Reaction Copolymerization.
A. Random copolymers. 1:1:2 mixture of terephthalic acid, isophtahlic acid, ethylene glycol. B. Alternating copolymers. a. b. Randomization : Trans-esterification. POLYMER CHEMISTRY
19
10. 6 Step-Reaction Copolymerization.
C. Block copolymer. Telechelic polymers. a. b. c.
20
10. 7 Step polymerization Techniques.
A. Significant difference between vinyl and nonvinyl polymerization. a. Vinyl polymerization : Large enthalpy factor. Exotherm reaction. b. Nonvinyl polymerization : High activation energy. Low exotherm. POLYMER CHEMISTRY
21
10. 7 Step polymerization Techniques.
B. Step polymerization techniques. a. Bulk polymerization. 1) Advantage : Free of contaminants. 2) Disadvantage : High viscosity. b. Solvent polymerization. 1) Advantage : Lower viscosity. Removing by products by azeotropic distillation. 2) Disadvantage : Solvent removing process. POLYMER CHEMISTRY
22
10. 7 Step polymerization Techniques.
c. Interfacial polymerization. Polymerization at the interface between immiscible two solvents. Water : Diamine. Organic solvent : Diacid chloride. 1) Low temperature polymerization. 2) Rapid polymerization. 3) Higher molecular weight. 4) Not necessary stoichiometric balance. ․Schotten-Baumann reaction. POLYMER CHEMISTRY
24
10. 7 Step polymerization Techniques.
d. Phase-transfer catalysis polymerization(PTC). 1) Phase-transfer catalyst : Benzyltriethylammonium chloride. C6H5CH2N+(C2H5)3Cl- 2) Mechanism : Dissolve in water and make ion pair. Move to organic layer.
25
10. 8 Dendritic Polymers. A. Terminology (Since 1980s)
Dendrimer : Dendron = like tree. Starburst polymer. B. Commercial application. a. Drug delivery system : Controlled release of agricultural chemicals b. Molecular sensors. c. Rheology modifiers. POLYMER CHEMISTRY
26
10. 8 Dendritic Polymers. C. Characteristics feature.
a. Structure : Three component parts. 1) Core. 2) Interior dendritic structure. 3) Exterior surface. b. Easy control macromolecular dimension by a repetitive sequence of step. c. More soluble than linear polymer : high surface functionality. d. Low viscosity : No entanglement. e. Supramolecular assembly : Guest molecules among the interior branches POLYMER CHEMISTRY
27
10. 8 Dendritic Polymers. D. Synthsis of dendrimer. a. Divergent :
1) Polyamidamine (PAMAM).
28
2)
29
10. 8 Dendritic Polymers. b. Convergent.
30
10. 8 Dendritic Polymers. E. Hyperbranched polymer.
a. Types of monomer : AxB ( x > 1). F. Nanostructure of dendrimer. a. Molecules dimension : 1-100nm. b. Molecules devices : Mimicking nanoscopic biomolecules. POLYMER CHEMISTRY
31
10. 9 Ring-opening polymerization.
A. Commercially important ring-opening polymers. Ring-opening polymers : Condensation polymers. Not polycondensation reaction. No byproduct. POLYMER CHEMISTRY
32
POLYMER CHEMISTRY
33
B. Mechanism of ring-opening polymerization.
a. Initiator : Ionic or coordination species (X*). 1) 2) b. Initiator : XY. 1)
34
10. 9 Ring-opening polymerization.
C. Ring strain : Possibility of ring-opening polymerization. 3 > 4 > 8 > 7 > 5 > 6 D. Ring-opening block copolymerization. AB, [AB] , ABA Block copolymer. POLYMER CHEMISTRY
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.