Download presentation

1
**Chapter 7 – Powers, Roots, and Radicals**

7.3 – Solving Radical Equations

2
**7.3 – Solving Radical Equations**

Today we will be: Solving equations that contain radicals or rational exponents

3
**7.3 – Solving Radical Equations**

Radical equation – an equation that contains radicals with the variable in the radicand. √(x + 6) = 5

4
**7.3 – Solving Radical Equations**

Isolate the radical on one side of the equation, if needed. Raise each side of the equation to the same power to eliminate the radical. Solve the resulting equation using techniques that you learned in previous chapters. Check your solution.

5
**7.3 – Solving Radical Equations**

Example 1 Solve 3√y – 4 = 0

6
**7.3 – Solving Radical Equations**

Example 2 2√(x + 12) – 3 = 5.

7
**7.3 – Solving Radical Equations**

To solve an equation with two radicals, first rewrite the equation so that each side has only one radical. Then raise each side of the equation to the same power.

8
**7.3 – Solving Radical Equations**

Example 3 Solve √3x - √(x + 6) = 0.

9
**7.3 – Solving Radical Equations**

Extraneous solution – an apparent solution that does not make the original equation true. Raising each side of an equation to the same power can lead to solutions that do not make the original equation true. You must check each apparent solution in the original equation Any solution that does not satisfy the original equation is extraneous

10
**7.3 – Solving Radical Equations**

Example 4 Solve x = √(x + 12). Check for extraneous solutions.

11
**7.3 – Solving Radical Equations**

When an equation contains a power with a rational exponent, you solve the equation the same way you would solve a radical equation. Isolate the power on one side of the equation Raise each side of the equation to the reciprocal of the rational exponent Solve for the variable

12
**7.3 – Solving Radical Equations**

Example 5 Solve x2/3 – 9 = 16. Check for extraneous solutions.

13
**7.3 – Solving Radical Equations**

HOMEWORK 7.3 Worksheet

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google