Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modelling of Aquatic Ecosystems

Similar presentations


Presentation on theme: "Modelling of Aquatic Ecosystems"— Presentation transcript:

1 Modelling of Aquatic Ecosystems
Exercise 4: Biogeochemical-Ecological Lake Model 1

2 = ≠ Exercises 1-3 Light and Temperature P Phyto v Zoo v groALG groZOO
deathZOO deathALG = Elemental composition

3 = ≠ ≠ Exercise 4 Virtual ecologist Light and Temperature Gaz exchange
Epilimnion P Phyto Zoo groALG groZOO O2 N O2 deathZOO deathALG Respiration Hypolimnion Mineralization Sedimentation Turbulent mixing POM = Elemental composition SPOM

4 System: Lake Reactor 1: Epilimnion Reactor 2: Hypolimnion
Exercise 4: Model summary System: Lake State variables: ALG ZOO HPO4 NO3 NH4 O2 POMD POMI sed.POMD sed.POMI Reactor 1: Epilimnion gro.ALG gro.ZOO resp.ALG resp.ZOO death.ALG death.ZOO miner.POM nitri Link: Metalimnion Reactor 2: Hypolimnion Degradable gro.ALG gro.ZOO sed.POM resp.ALG resp.ZOO miner.Sed.POM death.ALG death.ZOO miner.POM nitri Inert

5 ≠ Ecosim Exercise 4: Stoichcalc integration in Ecosim Growth
Elemental composition Exercise 3 stoichcalc Respiration v Death Mineralization Ecosim Process name gro.ZOO <- new(Class = "process", name = "gro.ZOO", rate = expression(k.gro.ZOO*exp(beta.ZOO*(T-T0)) *(C.O2/(K.O2.ZOO+C.O2)) *C.ALG *C.ZOO), stoich = as.list(nu["gro.ZOO",])) rate expression Exercise 4 stoichiometric coefficients list(C.ZOO = expression(1), # gDM/gDM C.ALG = expression(-1/Y.ZOO)) Exercises 1-2: Manual definition

6 Exercise 4: Tasks Task 1: Model Formulation
Study and try to understand the model formulation given in section 9.4. Note that it may be useful to study the “intermediately complex" model described in section 9.3. Task 2: Model Implementation Study and try to understand the implementation of the model as provided in the model 94.r Task 3: Model Results Perform a simulation of the model and try to understand the time courses of the state variables and the overall mass fluxes of phosphorus and nitrogen compounds Questions Task 4: Sensitivity Analysis (OPTIONAL) Do simple sensitivity analyses by modifying some of the kinetic parameters and interpret the changes in the simulation results

7 Exercise 4: Environmental conditions
Winter mixing

8 Exercise 4: Model results

9 Exercise 4: Stoichiometric coefficients & Yields
process HPO4 NH4+ NO3- O2 ALG ZOO POMD POMI SPOMD SPOMI gro.ALGNO3- - + 1 gro.ALGNH4+ resp.ALG -1 death.ALG 0/+ -1/YZOO (1-fI)YALG,death fIYALG,death gro.ZOO (1-fI)fe/YZOO fIfe/YZOO resp.ZOO death.ZOO (1-fI)YZOO,death fIYZOO,death nitri miner.ox.POM miner.ox.POM.sed miner.anox.POM.sed sed.POMD sed.POMI Why is it important that some stoichiometric coefficients are defined as “0/+”? Due to biological reasons, for example: If algae die they do not use any phosphorus. However, mathematically this can happen in the model due to the mass conservation principle if the concentration of P in POM is higher than in algae! Therefore, we need a restriction of the maximum turnover of algae into POM.

10 Exercise 4: Stoichiometric coefficients & Yields
process HPO4 NH4+ NO3- O2 ALG ZOO POMD POMI SPOMD SPOMI gro.ALGNO3- - + 1 gro.ALGNH4+ resp.ALG -1 death.ALG 0/+ -1/YZOO (1-fI)YALG,death fIYALG,death gro.ZOO (1-fI)fe/YZOO fIfe/YZOO resp.ZOO death.ZOO (1-fI)YZOO,death fIYZOO,death nitri miner.ox.POM miner.ox.POM.sed miner.anox.POM.sed sed.POMD sed.POMI How are the values YALG.death, YZOO.death calculated? param$Y.ZOO.death <- min(1, param$alpha.N.ZOO / param$alpha.N.POM, param$alpha.P.ZOO / param$alpha.P.POM, param$alpha.C.ZOO / param$alpha.C.POM) With this function we check whether N,P or C are limiting the turnover of dead algae or ZOO into POM. If none of the POM concentrations is higher than the algae/ZOO concentration, Y is set to one. This means that all the algae/ZOO are turned into POM.

11 System: Lake Reactor 1: Epilimnion Reactor 2: Hypolimnion
Exercise 4: metalimnion System: Lake State variables: ALG ZOO HPO4 NO3 NH4 O2 POMD POMI sed.POMD sed.POMI Reactor 1: Epilimnion gro.ALG gro.ZOO resp.ALG resp.ZOO death.ALG death.ZOO miner.POM nitri Link: Metalimnion Reactor 2: Hypolimnion Degradable gro.ALG gro.ZOO sed.POM resp.ALG resp.ZOO miner.Sed.POM death.ALG death.ZOO miner.POM nitri Inert

12 Exercise 4: process rates of mineralization

13 Exercise 4: mass balance N & P

14 Exercise 4: Sensitivity analysis
‘Shut down’ nitrification and mineralization

15 Exercise 4: Volumes and Areas
hypolimnion <- new(Class = "reactor", name = "Hypo", volume.ini = expression(A*h.hypo), area = expression(A), conc.pervol.ini = list(...), # gDM/m3 conc.perarea.ini = list(...), # gDM/m2 cond = cond.hypo, processes = list(...)) ρsed = vsed, POM / hhypo X CPOM mg/m3 ∙ s-1 mg∙s-1 ρsed x V Sedimentation mg / m3 mg/m2 ∙ s-1 ρsed x V x 1/A POM SPOM mg / m2


Download ppt "Modelling of Aquatic Ecosystems"

Similar presentations


Ads by Google