Presentation is loading. Please wait.

Presentation is loading. Please wait.

AP Calculus Chapter 1, Section 3

Similar presentations


Presentation on theme: "AP Calculus Chapter 1, Section 3"β€” Presentation transcript:

1 AP Calculus Chapter 1, Section 3
Evaluating Limits Analytically

2 Some Basic Limits In some cases, the limit can be evaluated by direct substitution. lim π‘₯→𝑐 𝑏 =𝑏 lim π‘₯→𝑐 π‘₯ =𝑐 lim π‘₯→𝑐 π‘₯ 𝑛 = 𝑐 𝑛

3 Evaluate the following limits

4 Properties of Limits Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits. lim π‘₯→𝑐 𝑓 π‘₯ =𝐿 and lim π‘₯→𝑐 𝑔 π‘₯ =𝐾 Scalar multiple: lim π‘₯→𝑐 𝑏𝑓 π‘₯ =𝑏𝐿 Sum or difference: lim π‘₯→𝑐 𝑓 π‘₯ ±𝑔 π‘₯ =𝐿±𝐾 Product: lim π‘₯→𝑐 𝑓 π‘₯ 𝑔 π‘₯ =𝐿𝐾 Quotient: lim π‘₯→𝑐 𝑓(π‘₯) 𝑔(π‘₯) = 𝐿 𝐾 β€² provided 𝐾≠0 Power: lim π‘₯→𝑐 [𝑓 π‘₯ ] 𝑛 = 𝐿 𝑛

5 lim π‘₯β†’2 ( 4π‘₯ 2 +3)

6 Limits of Polynomials & Rational Functions
If p is a polynomial function and c is a real number, then lim π‘₯→𝑐 𝑝 π‘₯ =𝑝(𝑐) If r is a rational function given by r π‘₯ =𝑝(π‘₯)/π‘ž(π‘₯) and c is a real number such π‘ž(𝑐)β‰ 0, then lim π‘₯→𝑐 π‘Ÿ π‘₯ =π‘Ÿ 𝑐 = 𝑝(𝑐) π‘ž(𝑐)

7 lim π‘₯β†’1 π‘₯ 2 +π‘₯+2 π‘₯+1

8 The Limit of a Function Involving a Radical
Let n be a positive integer. The following limit is valid for all c if n is odd, and is valid for 𝑐>0 if n is even. lim π‘₯→𝑐 𝑛 π‘₯ = 𝑛 𝑐

9 The Limit of a Composite Function
If f and g are functions such that lim π‘₯→𝑐 𝑔 π‘₯ =𝐿 and lim π‘₯→𝑐 𝑓 π‘₯ =𝑓(𝐿) , then lim π‘₯→𝑐 𝑓 𝑔 π‘₯ =𝑓 lim π‘₯→𝑐 𝑔 π‘₯ =𝑓(𝐿)

10 Because lim π‘₯β†’0 π‘₯ 2 +4 = 0 2 +4=4 and lim π‘₯β†’4 π‘₯ =2 it follows that lim π‘₯β†’0 π‘₯ 2 +4 = 4 =2

11 Limits of Trigonometric Functions
lim π‘₯→𝑐 sin π‘₯ = sin 𝑐 lim π‘₯→𝑐 cos π‘₯ = cos 𝑐 lim π‘₯→𝑐 tan π‘₯ = tan 𝑐 lim π‘₯→𝑐 cot π‘₯ = cot 𝑐 lim π‘₯→𝑐 csc π‘₯ = csc 𝑐 lim π‘₯→𝑐 sec π‘₯ = sec 𝑐

12 lim π‘₯β†’0 tan π‘₯ lim π‘₯β†’πœ‹ (π‘₯ cos π‘₯ ) lim π‘₯β†’0 sin 2 x

13 Dividing Out Technique
lim π‘₯β†’βˆ’3 π‘₯ 2 +π‘₯βˆ’6 π‘₯+3

14 Rationalizing Technique
lim π‘₯β†’0 π‘₯+1 βˆ’1 π‘₯ Check your answer by using a table

15 Then lim π‘₯→𝑐 𝑓(π‘₯) exists and is equal to L.
The Squeeze Theorem Basically says if you have two different function that have the same limit as π‘₯→𝑐, and you have a 3rd function that falls between the first two functions, the 3rd function will also have the same limit as π‘₯→𝑐. β„Ž(π‘₯)≀𝑓 π‘₯ ≀𝑔 π‘₯ for all x in an open interval containing c, except possibly c itself, and if lim π‘₯→𝑐 β„Ž π‘₯ =𝐿= lim π‘₯→𝑐 𝑔(π‘₯) Then lim π‘₯→𝑐 𝑓(π‘₯) exists and is equal to L.

16 Special Trigonometric Functions
lim π‘₯β†’0 sin π‘₯ π‘₯ =1 lim π‘₯β†’0 1βˆ’ cos π‘₯ π‘₯ =0

17 Find the limit: lim π‘₯β†’0 tan π‘₯ π‘₯

18 Find the limit: lim π‘₯β†’0 sin 4π‘₯ π‘₯

19 Homework Pg. 67 – 69: #1 – 77 every other odd, 83, 87, 113


Download ppt "AP Calculus Chapter 1, Section 3"

Similar presentations


Ads by Google