Download presentation
Presentation is loading. Please wait.
Published byEthelbert Anthony Fletcher Modified over 9 years ago
1
stem electron density ~ 1×10 11 cm -2 Gate Voltage ( Vg ) 0.0 ~ 0.8V wire electron density 0 ~ 4×10 5 cm -1 arm electron density 0 ~ 1.3×10 11 cm -2 Sample
2
1μm step0.2μm step scan Scan 1 Micro PL measurement with 1μm / 0.2μm step automatic scanning enables us to find the center (blue circle) at every experiments. Photon Energy (eV) Gate Voltage = 0.1V T=5K Stem well excitation with cw Ti:Sa laser (λ=750nm ) 0.2μW 、 ~1μm 2 spot size Reflection geometry Resolution 0.15meV wire trion PL
3
Scan 2 arm exciton wire trion Gate Voltage = 0.1V check all available aria with ~500μm ( 1.0μm step ) scanning PL continue more than 500μm…
4
Vg=0.7VVg=0.5V Vg=0.3V Vg=0.1V 0.5μm step scanning with various Gate Voltage ( Vg ) scan 3 Photon Energy (eV) → find the high quality aria (for example : blue arrow) T=5K PL
5
Gate Voltage dependence Vg = 0V ~ 0.7V (0.05V step) corresponds n 1D = 0 ~ 4×10 5 cm ‐ 1 E FE = 0~1.8meV ① ② ③ ⑤ ④ ① low electron density →1.569eV exciton peak ② trion peak : 2.3meV below exciton peak (trion binding energy) ③ high density →band to band transition 、 electron plasma state ④ Band Gap Renormalization(BGR) ⑤ Fermi Edge Singularity(FES) T=5K PL
6
Temperature dependence T=50KT=40KT=30K Photon Energy (eV) T=5K ① BGR at every temperature ② ratio of exciton / trion peak become large with temperature ③ FES disappear at high temperature ①①① ① ②② ③ ③
7
Temperature dependence of Energy shift compare BGR at Gate Voltage 0.2V~0.7V 5K 30K 40K 50K Photon Energy (eV) T (K)BGR(meV) 52.1 301.4 401.4 501.0 Small BGR at high temperature ①①①①
8
・ trion peak ( Vg=0.2 ~ 0.3V ) Temperature dependence of FWHM 5K 30K 40K 50K Photon Energy (eV) T (K)FWHM(meV ) 5 ~ 0.7 30 ~ 1.5 40 ~ 2.0 50 ~ 2.3 ・ At high Gate Voltage (Vg=0.4V ~) temperature dependence of FWHM is very small ④④④④
9
wire HH PLE PL PL & PLE of wire stem LH stem HH arm HH Photon Energy (eV) arm LH PL detection is perpendicular to the laser excitation to improve S/N ratio. Vg = 0.15V T = 5K LH : light hole HH : heavy hole excitation detect polarization
10
0.0V 0.1V 0.15V 0.2V 0.3V 0.4V ① ② ③ ① neutral exciton (exciton) ② charged exciton (trion) ③ FES Photon Energy (eV) Low density PLEPL ③ Gate Voltage 0.0V ~ 0.4V Theoretical work : M. Takagiwa, T. Ogawa, 2001 density n 1D H L
11
0.25V 0.35V 0.4V 0.5V 0.6V 0.7V 0.15V ① Fermi Edge ② Band Edge ③??? ① ② ③ High density Photon Energy (eV) PLEPL Gate Voltage 0.4V ~ 0.7V electron plasma
12
Electron density dependence of PLE varies with the position of the wire. PLE trion→electron plasma Photon Energy [eV] PL and PLE intensity [arb. Uuits] ( PLE ) Vg = 0.3V Vg = 0.35V Vg = 0.4V Vg = 0.45V Vg = 0.5V ( PL ) Vg = 0.15V PLE PL PLE PL PLE PL
13
PLE ( Vg=0.15 ) and PL ( Vg=0.12 ) at different position of wire. Resolution of PL : 0.15meV, PLE : 0.04meV 。 The gap between exciton peaks (or trion peaks) varies with electron density from 0.3meV to 0.5meV. This is probably due to stem well ML fluctuation (theoretical calculation : stem well ML fluctuation is ~0.3meV). High resolution PLE PL and PLE intensity [arb. Uuits] Photon Energy [eV] PLEPL
14
0.0V 0.02V 0.04V 0.06V 0.08V 0.14V 0.10V 0.12V Exciton peak shifts with electron density : 3.5meV / V ( blue line ). FWHM of PL spectrum (corresponds E F ) changes ~ 3.5meV/V. Trion peak doesn’t shift. Equation below can be expected. exciton shift PLE trionexciton : exciton : trion
15
1.1 0.8 0.2 1.5 1.8 2D ( arm well ) / 1D well ① ① ② ② ③ ③ 0.5 wire EFEF ( me V ) 1.1 0.8 0.2 1.5 1.8 0.5 EFEF ( me V ) ④④ ① E b wire : E b =2.3meV well : E b =1.4meV ② wire : blue shift, rapid damping well : blue shift, broadening ③ trion absor p wire : no shift, rapid damping well : blue shift, broadening ④ wire : large blue shift well : small blue shift begins from trion peak smoothly exciton Absorp. plasma absorp. V. Huard et al. Phys. Rev. Lett. 84 (2000) 187
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.