Presentation is loading. Please wait.

Presentation is loading. Please wait.

Agronomic Spatial Variability and Resolution What is it? How do we describe it? What does it imply for precision management?

Similar presentations


Presentation on theme: "Agronomic Spatial Variability and Resolution What is it? How do we describe it? What does it imply for precision management?"— Presentation transcript:

1 Agronomic Spatial Variability and Resolution What is it? How do we describe it? What does it imply for precision management?

2 Agronomic Variability Fundamental assumption of precision farming Agronomic factors vary spatially within a field If these factors can be measured then crop yield and/or net economic returns can be optimize

3 Agronomic Variables Soils –Classification –Texture –Organic matter –Water holding capacity Topography –Slope –Aspect Fertility –pH –Nitrogen –Phosphorus –Potassium –Other nutrients Plant available water Crop Cultivar

4 Agronomic Variables Temperature Rainfall Weeds –Species –Population Insects –Species –Feeding patterns Tillage Practices Soil Compaction Diseases –Macro and micro environment Crop Stand Method and Uniformity of Application –Fertilizers –Crop protectants

5 What is variability Variability - difference in the magnitude of measurements of a variable –Values can change randomly because of error in the sensor –Values can change because of changes in the underlying factor As time changes (Temporal) As location changes (Spatial)

6 Why statistically describe measurements? Raw data sets are too large to understand or interpret Statistics provide a means of summarizing data and can be readily interpreted for making management decisions Statistics can define relationships among variables

7 Statistical Analyses Commonly Used In Precision Agriculture Descriptive Statistics –Measures of Central Tendency Mean Median –Measures of Dispersion Range Standard Deviation Coefficient of Variation Regression Geostatistics - Semivariance Analysis

8 Measures of Central Tendency When a factor, such as crop yield, is measured at different locations within a field, values may vary greatly This variation can appear to be random The set of these measurements is a population A value exists that is the central or usual value of the population

9 Measures of Central Tendency This is important because the current practices in precision farming treat the field or area in the field based on the average of the measurements within the field or area

10 Mean or Average Value Most common measure of central tendency Definition: For n measurements X 1,X 2,X 3,…,X n n X n XXX X n i i n      1 21...

11 Mean or Average The mean or average value is useful if the measured value is normally distributed (Bell Curve) –Most biological processes are normally distributed –Spatially distributed measurements are often not normally distributed To calculated the mean in Excel = Average (Col Row:Col Row)

12 Definition of (Col Row : Col Row) Column letter of the upper left cell of an array of data Row number of the upper left cell of an array of data Column letter of the lower right cell of an array of data Row number of the lower right cell of an array of data The “:” instructs Excel to include all data between the two corner cells (Col Row:Col Row)

13 The Median Value For skewed distributions, is the better predictor of the expected or central value Calculated by ranking the values from high to low –For an odd number of measurements, the median is middle value –For an even number of measurements, the median is average of the two middle values

14 The Median Value In Excel, the median is calculated using the following formula: = Median (Col Row:Col Row)

15 Normal vs. Skewed Distribution Skewed Normal Mean Normal Skewed Median Normal Skewed

16 Measures of Dispersion Measures of dispersion describe the distribution of the set of measurements

17 Maximum and Minimum Values The maximum value is the highest value in the data set In Excel the maximum value is calculated by: = Max(Col Row:Col Row) The minimum value is the lowest value in the data set and is calculated by: = Min(Col Row:Col Row)

18 Range of the Sample Set Difference between the maximum and minimum values of the measurement Calculated in Excel by the following formula: = Max (Col Row:Col Row) - Min (Col Row:Col Row)

19 Standard Deviation The standard deviation of a normally distributed sample set is 1/2 of the “range” of ≈68 %values for the population 1 )( 1 2      n XX s n i i

20 Standard Deviation For a normal distribution (Bell Curve) ≈ 95% of the samples from a population will lie in the interval –Where: X is the mean(average) value Z is a value (measurement) s is the standard deviation The standard deviation is calculated in Excel using the following formula: = Stdev (Col Row:Col Row) sXZsX96.1.1 

21 Coefficient of Variation The magnitudes of the differences between large values and their means tend to be large. The differences between small values and their means tend to be small. Consequently, a high yielding field is likely to have a higher standard deviation than a low yielding field, even if the variability is lower in the high yield field.

22 Coefficient of Variation Thus, variation about two means of different magnitudes cannot easily be compared. Comparisons can be made by calculating the relative variation, or the normalized standard deviation. This measurement is called the Coefficient of Variation.

23 Coefficient of Variation The Coefficient of Variation or C.V. is calculated by dividing the standard deviation of the data set by its mean. Often that value is multiplied by 100 and the C.V. is expressed as a percentage. Experience with similar data sets is required to determine if the C.V. is unusually large.

24 Mean, Standard Deviation and Coefficient of Variation Population = Y Population = ½ Y Mean Plant Spacing Std. Dev. = sCV Std. Dev. Mean Plant Spacing

25 Correlation One objective of precision farming is to alter the level of one variable (e.g. soil nitrate) to change the response of another variable (e.g. grain yield). There are other confounding factors affecting grain yield, such as weed competition or pH, which cannot always be accounted for.

26 Correlation The practitioner still needs to determine the degree to which the two variables vary together. The correlation coefficient or r is that measure. The correlation coefficient, r, lies between -1 and 1. Positive values indicate that X and Y tend to increase or decrease together.

27 Correlation Values of r near 0 indicate that there is little or no relationship between the two variables. The coefficient of determination or r 2 is important in precision farming because, when the samples are collected by location in the field, it indicates the percentage of the variability in the dependent variable (e.g. yield) explained by the independent variable (e.g. N fertilizer).

28 Correlation For example, if the r 2 of soil N and grain yield is 90% then 90% of the variability across the field can be explained by soil nitrate. Spatially varying the N fertilizer rate based on the nitrate level in the soil should have a large effect on grain yield. In Excel, correlation r is calculate by the following: = Correl (Col Row:Col Row, Col Row: Col Row) To calculate r 2, simply square the value of r.

29 High Resolution Variability Study – 1 ft x 1ft Experiments


Download ppt "Agronomic Spatial Variability and Resolution What is it? How do we describe it? What does it imply for precision management?"

Similar presentations


Ads by Google