Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lesson 5 – Hess’ law and enthalpy cycles

Similar presentations


Presentation on theme: "Lesson 5 – Hess’ law and enthalpy cycles"— Presentation transcript:

1 Lesson 5 – Hess’ law and enthalpy cycles
Module 3 Lesson 5 – Hess’ law and enthalpy cycles

2 Objectives Must Recall Hess’ Law Should Interpret an enthalpy cycle using Hess’ Law Could Construct an enthalpy cycle and use it to calculate an enthalpy change of reaction from combustion data

3 Starter - Test What are standard conditions? Define ΔHc Define ΔHf
Define ΔHr Describe the following equations as ΔHc, ΔHr or ΔHf 3C(s) + 4H2(g) C3H8(g) C3H8(g) + 5O2(g)  3CO2(g) + 4H2O(l) C2H4(g) + H2(g)  C2H6(g) 2C2H6(l) + 7O2(g)  4CO2(g) + 6H2O(l) Write the equation for ΔHc for H2 CH3OH C

4 Starter - Answers Standard conditions are 298K, 100 kPa and 1M for solutions. All substances should be in their standard states The standard enthalpy change of combustion ΔHc is the enthalpy change that takes place when one mole of a substance reacts completely with oxygen under standard conditions, all reactants and products being in their standard states. The standard enthalpy change of formation ΔHf is the enthalpy change that takes place when one mole of a compound is formed from its constituent elements in their standard states under standard conditions. The standard enthalpy change of reaction ΔHr is the enthalpy change that accompanies a reaction in the molar quantities expressed in a chemical equation under standard conditions, all reactants and products being in their standard states.

5 Starter - Answers Describe the following equations as ΔHc, ΔHr or ΔHf
3C(s) + 4H2(g) C3H8(g) ΔHf C3H8(g) + 5O2(g)  3CO2(g) + 4H2O(l) ΔHc C2H4(g) + H2(g)  C2H6(g) ΔHr 2C2H6(l) + 7O2(g)  4CO2(g) + 6H2O(l) ΔHr (because 2mols are shown to be burnt) Write the equation for ΔHc for H2(g) + ½ O2(g)  H2O(l) CH3OH(l) + O2(g)  CO2(g) + H2O(l) C(s) + O2(g)  CO2(g)

6 Measuring enthalpy changes
Using a calorimeter for a combustion reaction or or other reaction can often give the ΔHr directly (think about the spirit burners and copper sulphate experiments you have done). Bond enthalpies can also be used to estimate ΔHr However it may not always be possible to measure the enthalpy change of a reaction directly.

7 Problems There may be: a high activation energy a slow reaction rate
more than one reaction taking place Take for example 3C(s) + 4H2(g)  C3H8(g) This is virtually impossible to measure directly - think of the number of compounds of hydrogen and carbon that could form!

8 Hess’ Law ΔH(Route A) = ΔH(Route B) – ΔH(Route C) A B C
Hess’ law states that, if a reaction can take place by more than one route and the initial and final conditions are the same, the total enthalpy change is the same. Reactants Products Intermediate A B C ΔH(Route A) = ΔH(Route B) – ΔH(Route C) Draw an enthalpy cycle – then if you follow the direction of an arrow then ADD. If opposite to the direction of the arrow then SUBTRACT.

9 Using combustion data ΔHr = Σ ΔHc(reactants) – Σ ΔHc(products) ΔHr
The combustion of reactants and combustion of products is a useful way to complete the cycle in a way that can be experimentally determined. ΔHr = Σ ΔHc(reactants) – Σ ΔHc(products) Reactants Products Combustion products ΔHr Σ ΔHc(reactants) Σ ΔHc(products) Draw an enthalpy cycle – then if you follow the direction of an arrow then ADD. If opposite to the direction of the arrow then SUBTRACT.

10 Example You are provided with the following enthalpy changes of combustion Determine the enthalpy change for the following reaction: 4C(s) + 5H2(g)  C4H10(g) Substance C(s) H2(g) C4H10(g) C2H5OH(l) ΔHc / kJmol-1 -394 -286 -2877 -1367

11 ΔHf = (4 x -394) + (5 x -286) – (-2877) = -129 kJmol-1
Substance C(s) H2(g) C4H10(g) C2H5OH(l) ΔHc / kJmol-1 -394 -286 -2877 -1367 4C(s) + 5H2 (g) C4H10(g) Combustion products ΔHf 4ΔHc(C)+ 5ΔHc(H2) ΔHc(C4H10) ΔHf = (4 x -394) + (5 x -286) – (-2877) = -129 kJmol-1

12 Example You are provided with the following enthalpy changes of combustion Determine the enthalpy change for the following reaction: 2C(s) + 3H2(g) + ½O2(g)  C2H5OH(l) Substance C(s) H2(g) C4H10(g) C2H5OH(l) ΔHc / kJmol-1 -394 -286 -2877 -1367

13 ΔHr = (2 x -394) + (3 x -286) – (-1367) = -279 kJmol-1
Substance C(s) H2(g) C4H10(g) C2H5OH(l) ΔHc / kJmol-1 -394 -286 -2877 -1367 ΔHr 2C(s) + 3H2 (g) + ½ O2(g) C2H5OH(l) ΔHc(C2H5OH) 2ΔHc(C)+ 3ΔHc(H2) Combustion products ΔHr = (2 x -394) + (3 x -286) – (-1367) = -279 kJmol-1

14 Examination question

15

16 Mark scheme

17 Mark scheme

18


Download ppt "Lesson 5 – Hess’ law and enthalpy cycles"

Similar presentations


Ads by Google