Download presentation
Published byAbigayle Chase Modified over 9 years ago
1
Surface Plasmons devices and leakage radiation microscopy
A.Drezet (ISIS- Univ. Louis Pasteur, Strasbourg, France) A. Hohenau, D. Koller, F. R. Aussenegg, J.R Krenn Nano - Optics Group ● Institute of Physics ● Univ. Graz, Austria nanooptics.uni-graz.at Marseille ,
2
e e Surface Plasmon polaritons (SPPs) at a single interface z SPP
Dielectric(Air,SiO2) E,B e Metal (Au,Ag) e Hy Raether, Surface Plasmons (Springer, Berlin, 1988). Genet and Ebbesen, Nature 445, 39 (2007). Drezet et al., Micron 38, 427 (2007).
3
SPP dispersion relation on a 70 nm thick gold film
Total Internal reflection Au/glass Au/air KSPP Johnson and Christy, PRB 6, 4370 (1972).
4
SPP dispersion relation on a 70 nm thick gold film
Au/glass Au/air
5
e e Leakage Radiation (LR) SPP modes metal glass z SPP air Air side LR
Glass side LR Hecht et al., PRL 77 ,1889 (1986). A. Bouhelier et al., PRB 63, (2001).
6
Leakage Radiation cone
LR cone SPP LR cone Rough Ag surface H. J Simon, J. K. Guha, Opt. Comm. 18, 391 (1976).
7
SPP SPP Au IO O2 LR LR Lens CCD
NSOM (near field scanning optical microscope) SPP SPP Au Polar. IO O2 LR LR Lens 15 µm CCD
8
Addressing a nanoobject with SPP
NSOM 4.2 K l=514 nm SPP R= distance hole-tip (nm) Quantum dots (CdTe/ZnTe) Brun et al., Europhys. Lett. 64 , 634 (2003)
9
Leakage Radiation Microscopy (LRM)
laser LRM on 50 nm Au film O1 SPP SPP Au l=800 nm IO O2 LR LR Lens CCD Stepanov et al., Optics Letters 30, 1524 (2005). Hohenau et al., Optics Letters 30 ,893 (2005).
10
SPP 2D Bragg reflectors Bragg condition:
Drezet et al., Europhys.Lett. 74, 693 (2006)
11
SPP interferometer 2D dipole model V=1, R= 0.95
12
LRM: Imaging the direct and the Fourier space
Drezet et al., APL 89, (2006).
13
(A) A) SPP dispersion in the direct space T 20 µm R L
Bragg mirror (out of resonance) Bragg condition: (A) T 20 µm R L
14
(B) SPP decay in the direct space Intensity (arbitrary units) 10 µm
20 30 40 1 (B) 10 µm Intensity (arbitrary units) 0.5 x (µm)
15
(A) B) SPP dispersion in the Fourier space Intensity (arbitrary units)
1 LRM (Fourier) L (A) Intensity (arbitrary units) 0.5 7.8 8.0 8.2 k (1/µm) Drezet et al., Appl.Phys.Lett. 89, (2006).
16
C) SPP Fourier optics (a) (A) L R 20 µm T (C) (D) (B) T C L R
17
SPP in plane elliptical cavity
Reflectance % Interferences Appl.Phys.Lett. 86, (2005)
18
SPP in plane interferometry
D1 D2 Bragg mirror SEM Intensity (a. u.) ridge LRM Phase difference 15 µm Ditlbacher et al.,APL. 81, 1762 (2002). Drezet et al., Plasmonics (2006). Phase difference
19
SPP in plane demultiplexer-plasmonic crystal
LRM Plasmonic crystal l=750 nm 3 SPP Au a e1 e2 550 nm b l=800 nm 30 µm Drezet et al., Nanolett. (pub. on line15 mai 2007).
20
SPP in plane Tritter = beam splitter 3 inputs-3outputs
LRM (direct) (Fourier) e2 e1 d 500nm 15 µm (Ewald sphere)
21
SPP in plane reflection microscope (M=3)
theory SPP 2 µm LRM 400 nm Drezet et al. Submitted to Optics letters (2007).
22
6 µm 2 µm 3 µm Intensity (arb.units) 1 µm 1.4 µm 500 nm 10 µm X (µm)
23
Summary LRM is a straightforward and reliable technique for probing SPP fields in direct and Fourier space. LRM allows precise quantitative analysis of SPP propagations. Fast method: alternative to PSTM, NSOM, NFO
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.