Download presentation

Published byAdele Ferguson Modified over 6 years ago

1
**5.10 Properties of Rhombuses, Rectangles, and Squares**

2
**Vocabulary A rhombus is a parallelogram with four congruent sides.**

A rectangle is a parallelogram with four right angles. A square is a parallelogram with four congruent sides and four right angles.

3
Corollaries Rhombus Corollary: A quadrilateral is a rhombus if and only if it has four congruent sides. Rectangle Corollary: A quadrilateral is a rectangle if and only if it has four right angles. Square Corollary: A quadrilateral is a square if and only if it is a rhombus and a rectangle.

4
ABCD is a rhombus. ABCD is a rectangle. ABCD is a square.

5
EXAMPLE 1 Use properties of special quadrilaterals For any rhombus QRST, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning. a. Q S SOLUTION a. By definition, a rhombus is a parallelogram with four congruent sides. By Theorem 8.4, opposite angles of a parallelogram are congruent. So, The statement is always true. Q S

6
EXAMPLE 1 Use properties of special quadrilaterals For any rhombus QRST, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning. Q R b. SOLUTION If rhombus QRST is a square, then all four angles are congruent right angles. So, if QRST is a square. Because not all rhombuses are also squares, the statement is sometimes true. Q R

7
Theorem 5.26: A parallelogram is a rhombus if and only if its diagonals are perpendicular. Theorem 5.27: A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles. Theorem 5.28: A parallelogram is a rectangle if and only if its diagonals are congruent.

Similar presentations

© 2022 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google