Download presentation
Presentation is loading. Please wait.
Published byGabriel Bennett Modified over 9 years ago
1
200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 Domain Symmetry Function Operations Misc.Inverses
2
What is the domain?
3
X > 4 Except for 6
4
What is the domain?
5
(-∞, -7] [7, ∞)
6
What is the domain?
7
[-9, 9]
8
What is the domain? f(X) = ½ X 2 - 6
9
All Real Numbers
10
What is the domain?
11
X ≥ 1 Except 10
12
Identify all possible symmetries. Y = X 2 – 4|X|
13
Y-Axis Symmetry
14
Identify all possible symmetries. Y = -X + 4X |X|
15
Origin
16
Identify all possible symmetries. Y 2 - 8X =0
17
X-Axis Symmetry
18
Identify all possible symmetries. Y = X 3 – X 5
19
Origin Symmetry
20
Identify all possible symmetries. Y = X 3
21
Origin
22
f(X) = X + 4 g(X) = 7 – X Find f -1 g -1
23
3 – X
24
f(X)=3X + 5 and g(X)=5 – X. Find: A) f °g B) g ° f C) (f °g)(-8)
25
A)20 – 3X B)-3X C)44
26
f(x) = 3X + 1 and g(X) = X+ 2 Find A) f(g(X)) and B) g(f(X))
27
A)3X + 7 B)3X + 3
28
f(x) = 3X + 1 and g(X) = X+ 2 find A) f(X) g(X) B) f(X) / g(X)
29
A)3X 2 + 7X + 2 B) (3X+1) / (X + 2)
30
f(X) = 3X + 5 and g(X) = X + 4 Find: A) (f – g)(3) B) (fg)(5)
31
A)7 B) 180
32
Write the inverse. f(X) = 1 – X 3
34
Write the inverse. f(X) = ½ X – 5
37
3X – 3; X ≥ 1
38
f(X) = X 2 – 8 g(X) = X 3 – 4 Find f – g and its domain.
39
-X 3 + X 2 – 4; All Real Numbers
40
Write the inverse function. f(X) = X + 15
42
Where is the function increasing and where is it decreasing?
43
Increasing:(-1.16, 1.16) Decreasing: (-00, -1.16) and (1.16, 00)
44
Find the functions’s local minimum and local maximum.
45
Local Min: (-1.16, -.77) Local Max: (1.16,.77)
46
Is the function even, odd, or neither?
47
Odd
48
Where is the function increasing and where is it decreasing?
49
Increasing: (0, 5] Decreasing: [-5, 0)
50
Is the function even, odd, or neither?
51
Even
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.