Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHYSICS-II (PHY C132) ELECTRICITY & MAGNETISM

Similar presentations


Presentation on theme: "PHYSICS-II (PHY C132) ELECTRICITY & MAGNETISM"— Presentation transcript:

1 PHYSICS-II (PHY C132) ELECTRICITY & MAGNETISM
Introduction to Electrodynamics: by David J. Griffiths (3rd Ed.) Dr. Champak B. Das ( BITS, Pilani)

2 Dr. Champak B. Das ( BITS, Pilani)
VECTOR ANALYSIS Differential Calculus Integral Calculus Revisited Curvilinear Coordinates The Dirac Delta Function Theory of Vector Fields Dr. Champak B. Das ( BITS, Pilani)

3 Differential Calculus
Derivative of any function f(x,y,z): Dr. Champak B. Das ( BITS, Pilani)

4 Gradient of function f  f is a VECTOR
Change in a scalar function f corresponding to a change in position : Gradient of function f  f is a VECTOR Dr. Champak B. Das ( BITS, Pilani)

5 Dr. Champak B. Das ( BITS, Pilani)
Geometrical interpretation of Gradient Z P Q dl Y change in f : X =0 => f  dl Dr. Champak B. Das ( BITS, Pilani)

6 Dr. Champak B. Das ( BITS, Pilani)
Z Q dl P Y X Dr. Champak B. Das ( BITS, Pilani)

7 The rate of change of f is max. for
The max. value of rate of change of f is f increases in the direction of Grad f is in the direction of the normal to the surface of constant f Dr. Champak B. Das ( BITS, Pilani)

8 Dr. Champak B. Das ( BITS, Pilani)
Gradient of a function slope of the function along the direction of maximum rate of change of the function Dr. Champak B. Das ( BITS, Pilani)

9 If  f = 0 at some point (x0,y0,z0)
=> df = 0 for small displacements about the point (x0,y0,z0) (x0,y0,z0) is a stationary point of f(x,y,z) Dr. Champak B. Das ( BITS, Pilani)

10 Dr. Champak B. Das ( BITS, Pilani)
Prob. 1.12 The height of a certain hill (in feet) is: h(x,y) = 10(2xy – 3x2 -4y2 -18x + 28y +12) where x is distance (in mile) east and y north of Pilani. (a) Where is the top located ? Ans: 3 miles North & 2 miles West Dr. Champak B. Das ( BITS, Pilani)

11 Dr. Champak B. Das ( BITS, Pilani)
Prob (contd.) h(x,y) = 10(2xy – 3x2 -4y2 -18x – 28y +12) (b) How high is the hill ? Ans: 720 ft (c) How steep is the slope at 1 mile north and 1 mile east of Pilani? In what direction the slope is steepest, at that point ? Ans: 311 ft/mile, direction is Northwest Dr. Champak B. Das ( BITS, Pilani)

12 Dr. Champak B. Das ( BITS, Pilani)
Prob. 1.13 Let rs is the separation vector from (x,y,z) to (x,y,z) . Dr. Champak B. Das ( BITS, Pilani)

13 Dr. Champak B. Das ( BITS, Pilani)
The Operator   is NOT a VECTOR, but a VECTOR OPERATOR Satisfies: Vector rules Partial differentiation rules Dr. Champak B. Das ( BITS, Pilani)

14 Dr. Champak B. Das ( BITS, Pilani)
 can act: On a scalar function f : f GRADIENT On a vector function F as: . F DIVERGENCE On a vector function F as:  × F CURL Dr. Champak B. Das ( BITS, Pilani)

15 Divergence of a vector Divergence of a vector is a scalar.
Dr. Champak B. Das ( BITS, Pilani)

16 Geometrical interpretation of Divergence
.F is a measure of how much the vector F spreads out/in (diverges) from/to the point in question. Dr. Champak B. Das ( BITS, Pilani)

17 Physical interpretation of Divergence
Flow of a compressible fluid: (x,y,z)  density of the fluid at a point (x,y,z) v(x,y,z)  velocity of the fluid at (x,y,z) Z X Y dy dx dz A C D B E F G H Dr. Champak B. Das ( BITS, Pilani)

18 Dr. Champak B. Das ( BITS, Pilani)
Net rate of flow out through all pairs of surfaces (per unit time): Dr. Champak B. Das ( BITS, Pilani)

19 Dr. Champak B. Das ( BITS, Pilani)
Net rate of flow of the fluid per unit volume per unit time: DIVERGENCE Dr. Champak B. Das ( BITS, Pilani)

20 Dr. Champak B. Das ( BITS, Pilani)
Example: Calculate, Dr. Champak B. Das ( BITS, Pilani)

21 Dr. Champak B. Das ( BITS, Pilani)
Prob. 1.16 Sketch the vector function and compute its divergence. Explain the answer ! ! Dr. Champak B. Das ( BITS, Pilani)

22 Curl Curl of a vector is a vector Dr. Champak B. Das ( BITS, Pilani)

23 Geometrical interpretation of Curl
×F is a measure of how much the vector F “curls around” the point in question. Dr. Champak B. Das ( BITS, Pilani)

24 Physical significance of Curl
Circulation of a fluid around a loop about a point : Y 3 2 y 4 1 x X Circulation Dr. Champak B. Das ( BITS, Pilani)

25 Dr. Champak B. Das ( BITS, Pilani)
Circulation per unit area z-component of CURL Dr. Champak B. Das ( BITS, Pilani)

26 Dr. Champak B. Das ( BITS, Pilani)
Sum Rules For Gradient: For Divergence: For Curl: Dr. Champak B. Das ( BITS, Pilani)

27 Rules for multiplying by a constant
For Gradient: For Divergence: For Curl: Dr. Champak B. Das ( BITS, Pilani)

28 Dr. Champak B. Das ( BITS, Pilani)
Product Rules For a Scalar from two functions: Gradients: Dr. Champak B. Das ( BITS, Pilani)

29 Dr. Champak B. Das ( BITS, Pilani)
Product Rules For a Vector from two functions: Divergences: Dr. Champak B. Das ( BITS, Pilani)

30 Dr. Champak B. Das ( BITS, Pilani)
Product Rules Curls: Dr. Champak B. Das ( BITS, Pilani)

31 Prob. 1.21 (a) Prob. 1.21 (b) Ans: What does the expression mean ?
Compute: Ans: Dr. Champak B. Das ( BITS, Pilani)

32 Dr. Champak B. Das ( BITS, Pilani)
Quotient Rules Dr. Champak B. Das ( BITS, Pilani)

33 Dr. Champak B. Das ( BITS, Pilani)
Second Derivatives Of a gradient: Divergence : Laplacian Curl : ( Prob. 1.27: Prove it ! ) Dr. Champak B. Das ( BITS, Pilani)

34 Dr. Champak B. Das ( BITS, Pilani)
Second Derivatives Of a divergence: Gradient : Dr. Champak B. Das ( BITS, Pilani)

35 Dr. Champak B. Das ( BITS, Pilani)
Second Derivatives Of a Curl: Divergence : Prob. 1.26: Prove it ! Curl : Dr. Champak B. Das ( BITS, Pilani)

36 Dr. Champak B. Das ( BITS, Pilani)
Integral Calculus Line Integral: Surface Integral: Volume Integral: Dr. Champak B. Das ( BITS, Pilani)

37 Fundamental theorem for gradient
Line integral of gradient of a function is given by the value of the function at the boundaries of the line. Dr. Champak B. Das ( BITS, Pilani)

38 Dr. Champak B. Das ( BITS, Pilani)
Corollary 1: Corollary 2: Dr. Champak B. Das ( BITS, Pilani)

39 Fundamental theorem for Divergence
The integral of divergence of a vector over a volume is equal to the value of the function over the closed surface that bounds the volume. Gauss’ theorem, Green’s theorem Dr. Champak B. Das ( BITS, Pilani)

40 Fundamental theorem for Curl
Integral of a curl of a vector over a surface is equal to the value of the function over the closed boundary that encloses the surface. Stokes’ theorem Dr. Champak B. Das ( BITS, Pilani)

41 Dr. Champak B. Das ( BITS, Pilani)
Corollary 1: Corollary 2: Dr. Champak B. Das ( BITS, Pilani)

42 Curvilinear coordinates: used to describe systems with symmetry.
Spherical Polar coordinates (r, , ) Cylindrical coordinates (s, , z) Dr. Champak B. Das ( BITS, Pilani)

43 Spherical Polar Coordinates
A point is characterized by: r : distance from origin Z  : polar angle P r  : azimuthal angle Y X Dr. Champak B. Das ( BITS, Pilani)

44 Cartesian coordinates in terms of spherical coordinates:
Z P r Y X Dr. Champak B. Das ( BITS, Pilani)

45 Spherical coordinates in terms of Cartesian coordinates:
Z P r Y X Dr. Champak B. Das ( BITS, Pilani)

46 Unit vectors in spherical coordinates
Prob : Unit vectors in spherical coordinates Z r Y X Dr. Champak B. Das ( BITS, Pilani)

47 Dr. Champak B. Das ( BITS, Pilani)
Line element in spherical coordinates: Volume element in spherical coordinates: Dr. Champak B. Das ( BITS, Pilani)

48 Dr. Champak B. Das ( BITS, Pilani)
Area element in spherical coordinates: on a surface of a sphere (r const.) on a surface lying in xy-plane ( const.) Dr. Champak B. Das ( BITS, Pilani)

49 Dr. Champak B. Das ( BITS, Pilani)
Ranges of r,  and  r : 0    : 0    : 0  2 Dr. Champak B. Das ( BITS, Pilani)

50 The Operator  in Spherical Polar Coordinates
Dr. Champak B. Das ( BITS, Pilani)

51 Dr. Champak B. Das ( BITS, Pilani)
Gradient: Divergence: Dr. Champak B. Das ( BITS, Pilani)

52 Dr. Champak B. Das ( BITS, Pilani)
Curl: Dr. Champak B. Das ( BITS, Pilani)

53 Dr. Champak B. Das ( BITS, Pilani)
Laplacian: Dr. Champak B. Das ( BITS, Pilani)

54 Cylindrical Coordinates
A point is characterized by: s : distance from z-axis Z z : cartesian coordinate s P  : azimuthal angle z Y X Dr. Champak B. Das ( BITS, Pilani)

55 Prob. 1.41 : Unit vectors in cylindrical coordinates
Z s z Y X Dr. Champak B. Das ( BITS, Pilani)

56 Dr. Champak B. Das ( BITS, Pilani)
Line element in cylindrical coordinates: Volume element in cylindrical coordinates: Dr. Champak B. Das ( BITS, Pilani)

57 Dr. Champak B. Das ( BITS, Pilani)
Ranges of s,  and z s : 0    : 0  2 z : -    Dr. Champak B. Das ( BITS, Pilani)

58 The Operator  in Cylindrical Coordinates
Dr. Champak B. Das ( BITS, Pilani)

59 Dr. Champak B. Das ( BITS, Pilani)
Gradient: Divergence: Dr. Champak B. Das ( BITS, Pilani)

60 Dr. Champak B. Das ( BITS, Pilani)
Curl: Laplacian: Dr. Champak B. Das ( BITS, Pilani)

61 Dr. Champak B. Das ( BITS, Pilani)
General expressions for the Derivatives in different coordinate systems u, v, w Coordinate System: Line element : Dr. Champak B. Das ( BITS, Pilani)

62 Dr. Champak B. Das ( BITS, Pilani)
System u v w f g h Cartesian x y z 1 Spherical r r sin Cylindrical s Dr. Champak B. Das ( BITS, Pilani)

63 Dr. Champak B. Das ( BITS, Pilani)
GRADIENT Dr. Champak B. Das ( BITS, Pilani)

64 Dr. Champak B. Das ( BITS, Pilani)
DIVERGENCE Dr. Champak B. Das ( BITS, Pilani)

65 Dr. Champak B. Das ( BITS, Pilani)
CURL : Dr. Champak B. Das ( BITS, Pilani)

66 Dr. Champak B. Das ( BITS, Pilani)
LAPLACIAN Dr. Champak B. Das ( BITS, Pilani)

67 Recall  Prob. 1.16 Sketch the vector function and compute its Divergence Dr. Champak B. Das ( BITS, Pilani)

68 Dr. Champak B. Das ( BITS, Pilani)
Calculation of Divergence => Divergence theorem => Dr. Champak B. Das ( BITS, Pilani)

69 And its integral over ANY volume containing the point r = 0
Note: as r  0; v  ∞ And its integral over ANY volume containing the point r = 0 Dr. Champak B. Das ( BITS, Pilani)

70 Dr. Champak B. Das ( BITS, Pilani)
THE DIRAC DELTA FUNCTION Dr. Champak B. Das ( BITS, Pilani)

71 The Dirac Delta Function
An infinitely high, infinitesimally narrow “spike” with area 1  Dirac Delta Function is NOT a Function Dr. Champak B. Das ( BITS, Pilani)

72 A Generalized Function OR distribution
The Defining Characteristic Integral : A Generalized Function OR distribution Dr. Champak B. Das ( BITS, Pilani)

73 Dr. Champak B. Das ( BITS, Pilani)
Delta function is something that is always intended for use under an integral sign. Let D1(x) & D2(x) are two expressions involving Delta functions and f(x) is any ordinary function Dr. Champak B. Das ( BITS, Pilani)

74 Dr. Champak B. Das ( BITS, Pilani)
One can show: ………..for a proof, see Example 1.15 Dr. Champak B. Das ( BITS, Pilani)

75 Dr. Champak B. Das ( BITS, Pilani)
The Dirac Delta Function Shifting the singularity from 0 to a; Dr. Champak B. Das ( BITS, Pilani)

76 Dr. Champak B. Das ( BITS, Pilani)
The Dirac Delta Function & the Defining Characteristic Integral : Dr. Champak B. Das ( BITS, Pilani)

77 Dr. Champak B. Das ( BITS, Pilani)
Prob. 1.43: Dr. Champak B. Das ( BITS, Pilani)

78 Dr. Champak B. Das ( BITS, Pilani)
Prob : Dr. Champak B. Das ( BITS, Pilani)

79 Dr. Champak B. Das ( BITS, Pilani)
THE DIRAC DELTA FUNCTION Dr. Champak B. Das ( BITS, Pilani)

80 Dr. Champak B. Das ( BITS, Pilani)
The Dirac Delta Function Shifting the singularity from 0 to a; Dr. Champak B. Das ( BITS, Pilani)

81 Dr. Champak B. Das ( BITS, Pilani)
The Dirac Delta Function (in three dimension) Dr. Champak B. Das ( BITS, Pilani)

82 Why such a function ? Describe very short range forces as nuclear force Describe a point particle in terms of a mass density Describe a point charge in terms of a charge density Dr. Champak B. Das ( BITS, Pilani)

83 Dr. Champak B. Das ( BITS, Pilani)
Prob. 1.46: Charge density of a point charge q at r : Charge density of a dipole with -q at 0 and +q at a: Dr. Champak B. Das ( BITS, Pilani)

84 Dr. Champak B. Das ( BITS, Pilani)
Prob. 1.46: (contd.) Charge density of a thin spherical shell of radius R and total charge Q: Dr. Champak B. Das ( BITS, Pilani)

85 Dr. Champak B. Das ( BITS, Pilani)
The Paradox of Divergence of From calculation of Divergence: By using the Divergence theorem: Dr. Champak B. Das ( BITS, Pilani)

86 Dr. Champak B. Das ( BITS, Pilani)
So now we can write: Such that: Dr. Champak B. Das ( BITS, Pilani)

87 Theory of Vector Fields
By specifying appropriate boundary conditions, Helmholtz theorem implies that the field can be uniquely determined from its divergence and curl. Dr. Champak B. Das ( BITS, Pilani)

88 Dr. Champak B. Das ( BITS, Pilani)
Potentials THEOREM 1: ( For Curl-less fields ) Dr. Champak B. Das ( BITS, Pilani)

89 Conclusions from theorem 1
If curl of a vector field vanishes, (everywhere), then the field can always be written as the gradient of a scalar potential ( not unique ) Dr. Champak B. Das ( BITS, Pilani)

90 Dr. Champak B. Das ( BITS, Pilani)
Potentials THEOREM 2: For Divergence-less fields Dr. Champak B. Das ( BITS, Pilani)

91 Conclusions from theorem 2
If divergence of a vector field vanishes, (everywhere), then the field can always be written as the curl of a vector potential ( not unique ) Dr. Champak B. Das ( BITS, Pilani)

92 Dr. Champak B. Das ( BITS, Pilani)
Helmholtz theorem: Any vector field F with both source and circulation densities vanishing at infinity may be written as the sum of two parts: one of which is curl-less and the other is divergence-less. (Always) Dr. Champak B. Das ( BITS, Pilani)


Download ppt "PHYSICS-II (PHY C132) ELECTRICITY & MAGNETISM"

Similar presentations


Ads by Google