Download presentation
Presentation is loading. Please wait.
Published byDaniel Wilkerson Modified over 9 years ago
1
Chemistry Wilbraham Staley Matta Waterman Chapter 3: Scientific Measurement Copyright © 2005 Pearson Education & Prentice-Hall, Inc.
2
Prompt: When you make a measurement, what are some possible sources of uncertainty?
3
How do you write numbers in scientific notation?
4
Measurement: is a quantity that has both a number and a unit. examples: height (66 inches) age (15) body temperature (37 o C ).
5
a gram of hydrogen, for example= 602,000,000,000,000,000,000,000 hydrogen atoms. The mass of an atom of gold = 0.000000000000000000000327 gram. Work more easily with number by writing them in scientific notation.
6
scientific notation: a given number is written as the product of two numbers: a coefficient and 10 raised to a power. For example, 602,000,000,000,000,000,000,000 can be written in scientific notation as 6.02 x 10 23 The coefficient in this number is 6.02, the power of 10, or exponent, is 23.
7
In scientific notation, the coefficient is always a number greater than or equal to one or less than ten. The exponent is an integer.
8
Positive exponent: indicated how many times the coefficient must be multiplied by 10. Negative exponent: indicated how many times the coefficient must be divide by 10.
9
Positive exponent! the exponent must be divided by 10 6, 300,000 = 6.3 x 10 6 94,700 = 9.47 x 10 4 equals the number of places that the original decimal point has been moved to the left. Larger than 10?
10
Less than 10 Negative Exponent! 0.000 008 = 8 x 10 -6 0.0736 = 7.36 x 10 -3 The value of the exponent equals the number of places the decimal has moved to the right.
11
Multiplication of numbers in scientific notation: multiply the coefficients and add the exponents (3 x 10 4 ) x (2 x 10 2 ) = (3x 2) x 10 4+2 = 6 x 10 6 (2.1 x 10 3 ) x (4.0 x 10 - 7 ) = (2.1 x 4) x 10 3+(-7) = 8.4 x 10 -4 Multiplication
12
Division To divide numbers written in scientific notation divide the coefficient and subtract the exponent in the denominator from the exponent in the numerator. (3 x 10 5 ) / (6.0 x 10 2 ) = (3.0 / 6.0) x 10 5-2 = 0.5 x 10 3 = 5.0 x 10 2
13
Addition and subtraction if you are not using a calculator then exponents must be the same. (5.4 x 10 3 ) + (8.0 x 10 2 ) = first rewrite the second number so equation is a 3. (5.4 x 10 3 ) + (8.0 x 10 2 ) = (5.4 x 10 3 ) + (0.80 x 10 3 ) (5.4 + 0.08) x 10 3 = 6.2 x 10 3
14
Using Scientific Notation Solve in your notes: a. (8.0 x 10 -2 ) x (7.0 x 10 -5 )= b. (7.1 x 10 -2 ) + (5 x 10 -3 )=
15
a. (8.0 x 10 -2 ) x (7.0 x 10 -5 )= (8.0 x 7.0) x 10 -2 (-5) = 56 x 10 -7 = 5.6 x 10 -6 b. (7.1 x 10 -2 ) + (5 x 10 -3 )= (7.1 x 10 -2 ) + (0.5 x 10 -2 ) = 7.6 x 10 -2
16
Accuracy, Precision and Error How do you evaluate accuracy and precision?
17
In groups of 2-3 students, use a meter-stick and a metric ruler to measure the height of the: wall deck front bench to the nearest meter, centimeter, or millimeter.
18
Make a table for your data! mcmmm Wall Deck Bench
19
When finished: Compare your results- Make a larger table on the white board, and write your findings in the appropriate locations.
20
Measurements can be correct but have degrees of uncertainty.
21
Were the measurements for each type of units the same?
22
Which unit provided the most accurate data?
23
Millimeters provides the closest measurement to the actual length.
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.