Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Subsurface Environment(s) of Petroleum University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology.

Similar presentations


Presentation on theme: "The Subsurface Environment(s) of Petroleum University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology."— Presentation transcript:

1 The Subsurface Environment(s) of Petroleum University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

2 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

3 The Subsurface Environment(s) of Petroleum I. Depth Typical depths: 1,000 - 10,000 feet / 300-3000 meters Deepest petroleum well to date: BP’s 2009 Tiber discovery well in Gulf of Mexico 35,055 ft / 10,685 m sub-seafloor in 4132 ft / 1259 m of water in Lower Tertiary strata Drilled by the Deepwater Horizon rig destroyed in April 2010. Deepest (?) onshore petroleum well GHK #1-27 Bertha Rogers in Washita County, Oklahoma (Anadarko Basin) (1974) 31,441 feet / 9583 m, P&A in molten sulfur Deepest drillhole to date: Kola Superdeep Borehole in Kola Peninsula, Russia (1989) 40,230 ft / 12,262 m (drilled non-rotary with a mud-motor bit) Temperature Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

4

5 BLACKWELL, DAVID, and MARIA RICHARDS, SMU Dept of Geological Sciences, Calibration of the AAPG Geothermal Survey of North America BHT Data Base smu.edu/geothermal/BHT/BHT.htm Depth of wells is not evenly distributed:

6 The Subsurface Environment(s) of Petroleum I. Depth Typical depths: 1,000 - 10,000 feet / 300-3000 meters Deepest petroleum well to date: BP’s 2009 Tiber discovery well in Gulf of Mexico 35,055 ft / 10,685 m sub-seafloor in 4132 ft / 1259 m of water in Lower Tertiary strata Drilled by the Deepwater Horizon rig destroyed in April 2010. Deepest (?) onshore petroleum well GHK #1-27 Bertha Rogers in Washita County, Oklahoma (Anadarko Basin) (1974) 31,441 feet / 9583 m, P&A in molten sulfur Deepest drillhole to date: Kola Superdeep Borehole in Kola Peninsula, Russia (1989) 40,230 ft / 12,262 m (drilled non-rotary with a mud-motor bit) Temperature Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

7 The Subsurface Environment(s) of Petroleum I. Depth Typical depths: 1,000 - 10,000 feet / 300-3000 meters Deepest petroleum well to date: BP’s 2009 Tiber discovery well in Gulf of Mexico 35,055 ft / 10,685 m in 4132 ft / 1259 m of water (30,923 feet subseafloor) in Lower Tertiary strata Drilled by the Deepwater Horizon rig destroyed in April 2010. Deepest (?) onshore petroleum well GHK #1-27 Bertha Rogers in Washita County, Oklahoma (Anadarko Basin) (1974) 31,441 feet / 9583 m, P&A in molten sulfur Deepest drillhole to date: Kola Superdeep Borehole in Kola Peninsula, Russia (1989) 40,230 ft / 12,262 m (drilled non-rotary with a mud-motor bit) Temperature Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

8 Andy Inglis

9 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

10

11 BP’s Tiber discovery well

12 The Subsurface Environment(s) of Petroleum I. Depth Typical depths: 1,000 - 10,000 feet / 300-3000 meters Deepest petroleum well to date: BP’s 2009 Tiber discovery well in Gulf of Mexico 35,055 ft / 10,685 m in 4132 ft / 1259 m of water (30,923 feet subseafloor) in Lower Tertiary strata Drilled by Transocean’s Deepwater Horizon rig destroyed in April 2010. Deepest (?) onshore petroleum well GHK #1-27 Bertha Rogers in Washita County, Oklahoma (Anadarko Basin) (1974) 31,441 feet / 9583 m, P&A in molten sulfur Deepest drillhole to date: Kola Superdeep Borehole in Kola Peninsula, Russia (1989) 40,230 ft / 12,262 m (drilled non-rotary with a mud-motor bit) Temperature Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

13 The Subsurface Environment(s) of Petroleum I. Depth Typical depths: 1,000 - 10,000 feet / 300-3000 meters Deepest petroleum well to date: BP’s 2009 Tiber discovery well in Gulf of Mexico 35,055 ft / 10,685 m in 4132 ft / 1259 m of water (30,923 feet subseafloor) in Lower Tertiary strata Drilled by the Deepwater Horizon rig destroyed in April 2010. Deepest (?) onshore petroleum well GHK #1-27 Bertha Rogers in Washita County, Oklahoma (Anadarko Basin) (1974) 31,441 feet / 9583 m, P&A in molten sulfur. Deepest drillhole to date: Kola Superdeep Borehole in Kola Peninsula, Russia (1989) 40,230 ft / 12,262 m (drilled non-rotary with a mud-motor bit) Temperature Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

14 The Subsurface Environment(s) of Petroleum I. Depth Typical depths: 1,000 - 10,000 feet / 300-3000 meters Deepest petroleum well to date: BP’s 2009 Tiber discovery well in Gulf of Mexico 35,055 ft / 10,685 m in 4132 ft / 1259 m of water (30,923 feet subseafloor) in Lower Tertiary strata Drilled by the Deepwater Horizon rig destroyed in April 2010. Deepest (?) onshore petroleum well GHK #1-27 Bertha Rogers in Washita County, Oklahoma (Anadarko Basin) (1974) 31,441 feet / 9583 m, P&A in molten sulfur. Deepest drillhole to date: Kola Superdeep Borehole in Kola Peninsula, Russia (1989) 40,230 ft / 12,262 m (drilled non-rotary with a mud-motor bit) Temperature Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

15 The Subsurface Environment(s) of Petroleum I. Depth Deepest petroleum well to date: BP’s 2009 Tiber discovery well in Gulf of Mexico 35,055 ft / 10,685 m Deepest (?) onshore petroleum well GHK #1-27 Bertha Rogers in Washita County, Oklahoma 31,441 feet / 9583 m, P&A in molten sulfur. Deepest drillhole to date: Kola Superdeep Borehole in Kola Peninsula, Russia (1989) 40,230 ft / 12,262 m (drilled non-rotary with a mud-motor bit: With a lot of rounding: Deepest* onshore petroleum well: 30 thousand feet Deepest* offshore petroleum well: 35 thousand feet Deepest* well/borehole of any sort: 40 thousand feet University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology * Greatest TD

16 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Significance: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

17 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Significance: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology (Lowest T of oil generation to ~metamorphism)

18 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Significance: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

19 Geothermal gradients: University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology From smu.edu/geothermal/heatflow/heatflow.htm

20 Geothermal gradients: University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology Both are from smu.edu/geothermal/heatflow/heatflow.htm Heatflow (at right) = conductivity x gradient (at left)

21 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

22

23 Geothermal gradients: University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology Alsharhan & Nairn 1997 Persian/Arabian Gulf

24 Geothermal gradients: University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology Alsharhan & Nairn 1997

25 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

26 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Measured during logging, well after circulation has stopped. Significance: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

27 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Measured during logging, well after circulation has stopped. Significance: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

28

29

30 Geothermal gradient = (215-32) - 20 5 9 10,095 / 3281 = 26.5 °C/km

31 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Measured during logging, well after circulation has stopped. Significance of temperature: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

32

33

34 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Measured during logging, well after circulation has stopped. Significance of temperature: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

35 North 1985

36 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Measured during logging, well after circulation has stopped. Significance of temperature: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Diagenetic reactions that destroy porosity Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology *Diagenesis: the physical and chemical modification of sediments that turns them into sedimentary rocks, including but not limited to compaction (lessening of bulk volume) and cementation (infiling of pores with minerals).

37 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology North 1985

38 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Measured during logging, well after circulation has stopped. Significance of temperature: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Diagenetic reactions that destroy porosity Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

39 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature Relevant range: 60-250°C Geothermal gradients: 5-100 °C/km Typically ~25 °C/km Bottom-hole Temperatures (BHTs) Measured during logging, well after circulation has stopped. Significance of temperature: (past) Thermal maturation of kerogen to yield petroleum Oil window: ~65-160°C Diagenetic reactions that destroy porosity Decreased resistivity of formation waters Degradation / melting of drill bit Pressure Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

40 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry Increasing total dissolved solids / salinity with depth Thus increasing density with depth Cl - typically the dominant anion Na + and Ca 2+ the dominant cations University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

41 North 1985 sw

42 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry Increasing total dissolved solids / salinity with depth Thus increasing density with depth Cl - typically the dominant anion Na + and Ca 2+ the dominant cations University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

43

44 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry Increasing total dissolved solids / salinity with depth Thus increasing density with depth Cl - typically the dominant anion Na + and Ca 2+ the dominant cations University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

45

46

47 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry Increasing total dissolved solids / salinity with depth Thus increasing density with depth Cl - typically the dominant anion Na + and Ca 2+ the dominant cations University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

48 North 1985

49 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

50

51 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

52 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

53 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

54 The dashed curve labeled “Natural water” is the pressure trajectory of a water column with porewaters increasing from G = 1.00 in the uppermost 1000 feet to 1.08 at 20,000 feet depth. The dashed curve labeled “Natural strata” is the pressure trajectory of a stratigraphic section with a mineral G of 2.65 with porosity decreasing from 25% in the uppermost 1000 feet to 4% at 20,000 feet.

55 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology These two are not nearly synonymous in the “isotropic” sense sometimes used in structural geology

56 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology These two are not nearly synonymous in the “isotropic” sense sometimes used in structural geology

57 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology These two are not nearly synonymous in the “isotropic” sense sometimes used in structural geology

58 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology The dashed curve labeled “Natural water” is the pressure trajectory of a water column with porewaters increasing from G = 1.00 in the uppermost 1000 feet to 1.08 at 20,000 feet depth. The dashed curve labeled “Natural strata” is the pressure trajectory of a stratigraphic section with a mineral G of 2.65 with porosity decreasing from 25% in the uppermost 1000 feet to 4% at 20,000 feet.

59 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

60 North 1985 Note dearth of data in (e).

61 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

62 Dallmus, in Weeks (1958) Note the inverted vertical scale.

63 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology Dallmus, in Weeks (1958)

64 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

65 The dashed curve labeled “Natural water” is the pressure trajectory of a water column with porewaters increasing from G = 1.00 in the uppermost 1000 feet to 1.08 at 20,000 feet depth. The dashed curve labeled “Natural strata” is the pressure trajectory of a stratigraphic section with a mineral G of 2.65 with porosity decreasing from 25% in the uppermost 1000 feet to 4% at 20,000 feet. Overpressure

66 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized... a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

67 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

68 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

69

70 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

71 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Less extensive compaction ii)Fracturing of rock ii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

72

73 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Less extensive compaction ii) Fracturing of rock iii) Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

74 Potential results of overpressure: i) Less extensive compaction ii) Fracturing of rock iii) University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology Agust Gudmundsson et al., 2010, Effects of internal structure and local stresses on frac- ture propagation, deflection, and arrest in fault zones: Journal of Structural Geology 32, 1643-1655.

75 The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Less extensive compaction ii) Fracturing of rock iii) Blowout of well Water Chemistry University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology

76

77 200 foot flames at a 1998 natural gas well blowout near Bakersfield, CA. Image from Sandia National Laboratories via a Wilderness Society webpage.. The Subsurface Environment(s) of Petroleum I. Depth II. Temperature III. Water Chemistry IV. Pressure Force/area Weight/area (psi) Lithostatic: Weight of overlying rock Hydrostatic: Weight of overlying column of fluid (in which density typically increases downward) Results Greater pressure at depth Compaction of sediments/rocks Overpressure: subsurface liquid/gas pressure greater than hydrostatic pressure Pore fluids sealed below an impermeable stratum are pressurized a) because of compaction (decrease of pore volume) or b) because of diagenetic chemical reactions that release liquid or gas (increase of fluid volume) Potential results of overpressure: i) Less extensive compaction ii) Fracturing of rock iii) Blowout of well

78

79

80

81 University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology


Download ppt "The Subsurface Environment(s) of Petroleum University of Georgia Department of Geology GEOL 4320/6320 Petroleum Geology."

Similar presentations


Ads by Google