Presentation is loading. Please wait.

Presentation is loading. Please wait.

Neutron Stars 1: Basics Andreas Reisenegger ESO Visiting Scientist Associate Professor, Pontificia Universidad Católica de Chile.

Similar presentations


Presentation on theme: "Neutron Stars 1: Basics Andreas Reisenegger ESO Visiting Scientist Associate Professor, Pontificia Universidad Católica de Chile."— Presentation transcript:

1

2 Neutron Stars 1: Basics Andreas Reisenegger ESO Visiting Scientist Associate Professor, Pontificia Universidad Católica de Chile

3 Outline of the Lecture Series 1.Basics: Theory & history: prediction, discovery, etc. 2.Phenomenology: The many observational “incarnations” of NSs & what we can learn from them 3.Thermal evolution: Cooling & heating mechanisms, expected thermal history, obs. constraints & what they tell us about nuclear physics & gravity 4.Magnetism: Determination of NS magnetic fields, their origin, evolution, and related physical processes

4 Outline of Lecture 1 Degenerate fermions, white dwarfs, & Chandrasekhar mass Prediction of neutron stars, main predicted properties Pulsar discovery & interpretation

5 Bibliography - 1 Stuart L. Shapiro & Saul A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, Wiley (1983): quite outdated on the phenomenology, but still the most comprehensive and pedagogical discussion Richard R. Silbar & Sanjay Reddy, Neutron Stars for Undergraduates, Am. J. Phys. 72, 892-902 (2004; erratum 73, 286, 2005), nucl-th/0309041: how to build simple numerical models of neutron stars James M. Lattimer & Madappa Prakash, The Physics of Neutron Stars, Science, 304, 536 (2004): review Norman K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, Springer (1997): quite theoretical

6 Bibliography - 2 Kip S. Thorne, Black Holes & Time Warps: Einstein’s outrageous legacy, Norton (1993): entertaining popular history of the idea of compact stars & black holes Bernard F. Schutz, A first course in general relativity, Cambridge (1985): rigorous, but elementary account of GR from the basics up to relativistic stars, black holes, & cosmology Soon to appear: P. Haensel, A. Y. Potekhin, & D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure (2006)

7 Pauli principle Fermions: particles of half-integer spin (½, 3/2,...): –electrons, protons, neutrons... obey Pauli exclusion principle (1925): No more than 1 fermion can occupy a given orbital (1-particle quantum state)  “Fermi-Dirac statistics”

8 Ground state of fermion system Each orbital has a phase-space volume Ground state of system of N fermions of spin ½ (s z =  ½) in a spatial volume V (“box”): Ground state (T=0) has all particles in the orbitals of the lowest possible energy  Fermi sphere in momentum space:

9 Degeneracy pressure Fermi energy: –Max. fermion energy @ T= 0 –Also chemical potential of the system:  F =  (T= 0) –General: –Non-relativistic limit, p F <<mc: –Extreme relativistic limit, p F >>mc: Total energy E: Sum over Fermi sphere (all particles) “Degeneracy pressure” P: –Through kinetic theory or thermodynamics –Non-zero value at T=0 –Non-relativistic Extreme relativistic Zero-temperature limit is good approximation as long as kT <<  F –Thermal effects are only a small correction for white dwarfs & neutron stars

10 White dwarfs Hydrostatic equilibrium Non-relativistic electron degeneracy pressure Combining,  white dwarfs get smaller (denser & more relativistic) as M increases Relativistic electrons Combining with hydrost. equil.  unique mass (Chandrasekhar 1931)

11 Neutrons 1932: James Chadwick discovers the neutron.

12 Neutrons: decay or not decay? In vacuum (lab), neutrons decay with half-life ~ 15 min: In very dense matter, neutrons are stable (don’t decay) because low-energy proton & electron orbitals are already occupied “Chemical” (weak interaction) equilibrium Around nuclear density, neutrons coexist stably with a much smaller number (~1%) of protons & electrons (fraction density-dependent & uncertain) At higher densities, strong interactions among particles are difficult to model, making the state of matter (& eq. of state) more & more uncertain.

13 Baade & Zwicky (1934): “With all reserve we advance the view that supernovae represent the transition from ordinary stars into neutron stars, which in their final stage consist of extremely closely packed neutrons.” Supernova 1987A (23 Febr. 1987) in the Large Magellanic Cloud: before & after

14 Collapse Collapse of stellar core  huge density forces p + e  n + Neutrinos ( ) escape: a few detected 2 hours before the light of SN 1987A. Neutrinos Remnant BUT: No neutron star found!

15 Neutron stars First approximation: Self-gravitating ball of non- interacting neutrons at T=0 Recall non-relativistic white dwarf: Neutron star (by analogy / scaling):

16 Derived quantities Assume Surface gravity Escape speed “Breakup” rotation Schwarzschild radius “Relativity parameter”  Mass reduction ~ 20% when NS forms (carried away by neutrinos, perhaps gravitational waves) Gravitational redshift factor

17 Relativistic stellar structure eqs. Since P=P(  ) only (no dependence on T, equilibrium composition), these two equations are enough to calculate the NS or WD structure. dL/dr=..., dT/dr=... are important only for the thermal evolution. First (numerical) solution for NSs: Oppenheimer & Volkoff 1939

18 The state of matter changes with density (T  0): “Ordinary” solid Solid + neutrons npe liquid More exotic particles: –muons  –mesons ,  –hyperons ,  –??? Quark matter?

19 Mass- radius relation for NSs Black (green) curves are for normal matter (SQM) equations of state. Regions excluded by general relativity (GR), causality, and rotation constraints are indicated. Contours of radiation radii R are given by the orange curves. The dashed line labeled  I/I = 0.014 is a radius limit estimated from Vela pulsar glitches (27). from Lattimer & Prakash 2004

20 Expected thermal radiation Neutron stars are born in stellar core collapse: initially very hot, expected to radiate thermally (~ blackbody) (Chiu 1964, Chiu & Salpeter 1964) Might be detectable in soft X-rays (difficult) Start of X-ray astronomy (Giacconi et al. 1962): –several sources (quasars, etc.) –growing theoretical interest in NSs –at first no unambiguous detections of NSs (X-ray pulsars found by UHURU, 1971) –no detections of pure, thermal radiators until much later

21 Pulsars: discovery 1967: PhD student Jocelyn Bell & her supervisor Anthony Hewish detect a very regular Pulsating Source of Radio (PSR 1919+21) with P=1.377 s, initially “LGM 1”. http://www.jb.man.ac.uk/~pulsar/Education/Sounds/sounds.html

22 Pulsar in the Crab nebula (remnant of SN 1054)

23 Lyne 2000

24 How we know pulsars are NSs Association with supernova remnants (SNRs) Rotation of Crab pulsar –Much faster ones (“millisecond pulsars”) found later Energy budget of SNR in rough agreement with energy lost from rotating NS. Very high-energy (non-thermal) emission: likely relativistic system Thermal emission (X-rays): emitting region  10 km Binary systems: Precise masses 1.25-1.45 M sun ~ M Chandra

25 Masses of pulsars in binary systems Fig. by I. Stairs, reproduced in Lorimer 2005

26 “Tommy” Gold Franco Pacini

27 Known pulsars: ~ 2000

28 Other neutron stars Several other classes of observed objects are also believed to be NSs: X-ray binaries (some NSs, some black holes) “Soft gamma-ray repeaters” & “Anomalous X-ray Pulsars”  “Magnetars” Thermal X-ray emitters: –bright central objects in SNRs –fainter, isolated objects Radio transients (RRATs) See tomorrow’s Lecture for details...


Download ppt "Neutron Stars 1: Basics Andreas Reisenegger ESO Visiting Scientist Associate Professor, Pontificia Universidad Católica de Chile."

Similar presentations


Ads by Google