Presentation is loading. Please wait.

Presentation is loading. Please wait.

Group N Chris Jones Ella Feekins Nikoline Hong

Similar presentations


Presentation on theme: "Group N Chris Jones Ella Feekins Nikoline Hong"— Presentation transcript:

1 Group N Chris Jones Ella Feekins Nikoline Hong
Bridge Design Project Design of a Link Bridge over Upper Hanover Street Detailed Design Group N Chris Jones Ella Feekins Nikoline Hong

2 Aims and Objectives To provide a safe passage for pedestrians and cyclists over Upper Hanover Street To reduce the use of road level pedestrian crossings, thus improving safety in the area and traffic flow at Brook Hill roundabout To devise an elegant and sustainable design that will act as a landmark for the University of Sheffield To provide a direct route between the major university developments

3 Location

4 Location Direct links to major university developments
Does not impede on existing buildings Requires no permanent road closures Integrates an existing cycle route Requires a long span bridge solution

5 Cable-stayed Bridge

6 Cable-stayed Bridge Landmark structure
Integrates into surrounding area Provides vital links using multiple access points Incorporates pedestrian footpaths, cycle lanes and disabled access points

7 Ramp Design EC3 design Deck Columns Simply supported Typical span 8m
Flexible end plate connections using M20 ‘hollo-bolts’ Columns 203x203UC60 sections Simple connections Lateral stability provided by diagonal bracing

8 Ramp Design RAMP ELEVATION

9 Bridge Deck Static Analysis Loading:
- Permanent: Self weight (including deck plate) - Imposed: 5kN/m2 - Wind: Max 0.8kN/m2 (acting transversely or in uplift)

10 Bridge Deck Dynamic Analysis Simplified model
No mode near pedestrian mode frequencies Mode Natural Frequency 1 3.915 Hz 2 5.548 Hz 3 5.895 Hz

11 Bridge Deck Thermal Analysis Bridge deck requires a movement joint
Temperature Expansion -18°C -12mm 20°C 0mm 85°C 40mm Bridge deck requires a movement joint Roller joint will be positioned at one support

12 Towers Tower Designed as 15m cantilever (concrete-filled circular hollow section) Maximum bending moment 9000kNm at base Column tapers from 1500mm to 500mm, 25mm wall thickness No incline due to space issues

13 Cables and Base Cables Bases Maximum cable tension 366kN
Tieback tension 2736kN 50mm diameter High tensile strength steel Bases Treated as 6m tall, reinforced concrete shell, around base of tower Slab: 145 deep, 250 centres 300 secondary) Beams: 500x200, 4T10 bars with T8 300 centres Columns: 800x200, 4T10 bars with T8 300 centres Assumed to act as an encastre joint for the tower

14 Construction Phased construction Large cranes will be required
Construct reinforced concrete bases Transport individual prefabricated deck sections to site Install ramp columns, bracing and deck (giving safe access to tower bases) Erect support towers Connect deck sections in series and anchor support cables in tower Large cranes will be required Difficult to maintain two lanes of traffic Temporary stability needs to be provided to bridge deck during construction

15 Sustainability Environmental Social Economic
Durable and low-maintenance design Limited range of material options Locally source steel and concrete aggregate Reduce transport and waste during construction Provides link to existing cycle path Social Provides direct links to major university developments Incorporates pedestrian footpaths, cycle lanes and disabled access points Economic High initial cost may be mitigated using advertising Low running costs Encourages improvement in local economy

16 Conclusion Landmark Structure Provides direct links Socially inclusive


Download ppt "Group N Chris Jones Ella Feekins Nikoline Hong"

Similar presentations


Ads by Google