Presentation is loading. Please wait.

Presentation is loading. Please wait.

Simple Harmonic Motion

Similar presentations


Presentation on theme: "Simple Harmonic Motion"— Presentation transcript:

1 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

2 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

3 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

4 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

5 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

6 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

7 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

8 Simple Harmonic Motion
Vibration / oscillation motion which Regularly Repeats itself Back and forth Cycle= complete to-and-fro motion Cycle=from peak to trough back to peak or From trough to peak back to trough

9 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

10 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

11 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

12 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

13 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

14 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

15 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

16 Simple Harmonic Motion
Period- the time it takes for one complete cycle Frequency- The number of cycles completed per second Frequency-measured in Hertz- cycles per sec. Frequency Units- 1/s or s-1 f=1/T T=1/f

17 Simple Harmonic Motion
ms

18 Simple Harmonic Motion
ms

19 Simple Harmonic Motion
0 ms ms ms ms ms

20 Simple Harmonic Motion
0 ms ms ms ms ms

21 Simple Harmonic Motion
0 ms ms ms ms ms

22 Simple Harmonic Motion
0 ms ms ms ms ms

23 Simple Harmonic Motion
0 ms ms ms ms ms Frequency = cycles per second

24 Simple Harmonic Motion
0 ms ms ms ms ms Frequency = cycles per second = 3 cycles /

25 Simple Harmonic Motion
0 ms ms ms ms ms Frequency = cycles per second = 3 cycles / 9.6 ms = 3 cycles /(.0096s) =

26 Simple Harmonic Motion
0 ms ms ms ms ms Frequency = cycles per second = 3 cycles / 9.6 ms = 3 cycles /(.0096s) = Hz

27 Simple Harmonic Motion
0 ms ms ms ms ms Frequency = cycles per second = 3 cycles / 9.6 ms = 3 cycles /(.0096s) = Hz Period = 1 / f

28 Simple Harmonic Motion
0 ms ms ms ms ms Frequency = cycles per second = 3 cycles / 9.6 ms = 3 cycles /(.0096s) = Hz Period = 1 / f = 1 / s = s or 3.2 ms on average

29 Simple Harmonic Motion
0 ms ms ms ms ms Frequency = cycles per second = 3 cycles / 9.6 ms = 3 cycles /(.0096s) = Hz Period = 1 / f = 1 / s = s or 3.2 ms on average

30 Period of oscillation of a Spring Mass System Period of oscillation of Pendulum Mass System
T=2p m k Dependent on mass and inversely related to the spring constant Pendulum T=2p l g Dependent on length and inversely related to the acceleration due to gravity

31 Period of oscillation of a Spring Mass System Period of oscillation of Pendulum Mass System
T=2p m k Dependent on mass and inversely related to the spring constant Pendulum T=2p l g Dependent on length and inversely related to the acceleration due to gravity

32 Period of oscillation of a Spring Mass System Period of oscillation of Pendulum Mass System
T=2p m k Dependent on mass and inversely related to the spring constant Pendulum T=2p l g Dependent on length and inversely related to the acceleration due to gravity

33 Period of oscillation of a Spring Mass System Period of oscillation of Pendulum Mass System
T=2p m k Dependent on mass and inversely related to the spring constant Pendulum T=2p l g Dependent on length and inversely related to the acceleration due to gravity

34 Period of oscillation of a Spring Mass System Period of oscillation of Pendulum Mass System
T=2p m k Dependent on mass and inversely related to the spring constant Pendulum T=2p l g Dependent on length and inversely related to the acceleration due to gravity

35 Period of oscillation of a Spring Mass System Period of oscillation of Pendulum Mass System
T=2p m k Dependent on mass and inversely related to the spring constant Pendulum T=2p l g Dependent on length and inversely related to the acceleration due to gravity

36 Period of oscillation of a Spring Mass System Period of oscillation of Pendulum Mass System
T=2p m k Dependent on mass and inversely related to the spring constant Pendulum T=2p l g Dependent on length and inversely related to the acceleration due to gravity

37 Natural Frequency – Forced Vibration- Resonance
The frequency that a system occurs when a force is applied to it. A Driving Force is a force that is applied over and over again.

38 Natural Frequency – Forced Vibration- Resonance
The frequency that a system acquires when a force is applied to it. A Driving Force is a force that is applied over and over again.

39 Natural Frequency – Forced Vibration- Resonance
The frequency that a system acquires when a force is applied to it. A Driving Force is a force that is applied over and over again. Resonance occurs when the driving force is applied at the natural frequency or multiples of the natural frequency

40 Natural Frequency – Forced Vibration- Resonance
The frequency that a system acquires when a force is applied to it. A Driving Force is a force that is applied over and over again. Resonance occurs when the driving force is applied at the natural frequency or multiples of the natural frequency Resonance produces large amplitude standing waves

41 Natural Frequency – Forced Vibration- Resonance
The frequency that a system acquires when a force is applied to it. A Driving Force is a force that is applied over and over again. Resonance occurs when the driving force is applied at the natural frequency or multiples of the natural frequency Resonance produces large amplitude standing waves

42 Natural Frequency – Forced Vibration- Resonance
Resonance caused the Tacoma Narrows Bridge to collapse Resonance can cause a wine glass to break Resonance can is used in string instruments, open end wind instruments, and closed end tube wind instruments

43 Standing Waves Nodes points of destructive interference
Antinodes points of constructive interference Standing waves are produced at natural frequencies or resonant frequencies.

44 Standing Waves strings
L= n l / 2 L = the length of a string Lambda equals the wavelength n = an interger n = 1 fundamental frequency n= 2 second harmonic n = 3 third hamonic

45 Standing Waves Open Springs continued.
Nodes are found at the fixed ends. Antinodes are not possible at the fixed ends The velocity on a string is directly related to its tension and inversely related to the mass per unit length.

46 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

47 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

48 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

49 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

50 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

51 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

52 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

53 Standing waves open end tubes
Antinodes are possible at the open ends L=n l / 2 L=length of the tube lambda wavelength n = 1 fundamental frequency n = 2 2nd harmonic n = 3 3rd harmonic

54 Standing waves open end tubes
v= speed of sound v = ( T) m / s

55 Standing waves closed end tubes
L = l / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible.

56 Standing waves closed end tubes
L = lambda / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible.

57 Standing waves closed end tubes
L = lambda / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible.

58 Standing waves closed end tubes
L = lambda / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible.

59 Standing waves closed end tubes
L = lambda / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible.

60 Standing waves closed end tubes
L = lambda / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible. 1

61 Standing waves closed end tubes
L = lambda / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible. 3 1

62 Standing waves closed end tubes
L = lambda / 4 L = length of the tube lamda = wavelength antinodes are possible at the open end. nodes are possible at the closed end. Only odd harmonics are possible. 3 5 1

63 Beats The rising and falling of sound intensity is known as beats
The beat frequency tells you how many cycles per second the source frequency is different than the standard frequency. The beat frequency does not tell you if the source frequency is higher or lower than the standard.

64 Beats

65 Doppler Effect f=fo ( v + - vo ) ( v - + vs)
vo = velocity of the observer vs = velocity of the source. vo =+ observer towards source f increases WHY? vo = - source towards observer-f increases WHY?

66 Doppler Effect f=fo ( v + - vo ) ( v - + vs)
vo =+ observer towards source f increases WHY? Multiply be a larger Numerator = Higher f vo = - source towards observer-f increases WHY? Divide by a smaller Denominator = Higher f

67 Wave Motion Matter is not carried in mechanical waves.
Energy is carried by mechanical waves. A wave has a velocity equal to the product of.. its frequency and wavelength. V= f lamda

68 Wave Motion Matter is not carried in mechanical waves.
Energy is carried by mechanical waves. A wave has a velocity equal to the product of.. its frequency and wavelength. V= f lamda

69 Wave Motion Matter is not carried in mechanical waves.
Energy is carried by mechanical waves. A wave has a velocity equal to the product of.. its frequency and wavelength. V= f lamda

70 Wave Motion Matter is not carried in mechanical waves.
Energy is carried by mechanical waves. A wave has a velocity equal to the product of.. its frequency and wavelength. V= f l

71 Wave Properties Amplitude=maximum height relative to… The equilibrium
Wavelength=distance between crests Frequency = the number of crests which pass a given pt per second = cycle per sec = 1 Hz

72 Wave Properties Amplitude=maximum height relative to… The equilibrium
Wavelength=distance between crests Frequency = the number of crests which pass a given pt per second = cycle per sec = 1 Hz

73 Wave Properties Amplitude=maximum height relative to… The equilibrium
Wavelength=distance between crests Frequency = the number of crests which pass a given pt per second = cycle per sec = 1 Hz

74 Wave Properties Amplitude=maximum height relative to… The equilibrium
Wavelength=distance between crests Frequency = the number of crests which pass a given pt per second = cycle per sec = 1 Hz

75 Wave Properties Amplitude=maximum height relative to… The equilibrium
Wavelength=distance between crests Frequency = the number of crests which pass a given point per second = cycle per sec = 1 Hz

76 Wave Properties Amplitude=maximum height relative to… The equilibrium
Wavelength=distance between crests Frequency = the number of crests which pass a given pt per second = cycle per sec = 1 Hz

77 Velocity of a Wave on a string
v= FT (m/l) FT= is the equal to the… Tension in the string. m / L is the … The mass per unit length of the string.

78 Velocity of a Wave on a string
v= FT (m/l) FT= is the equal to the… Tension in the string. m / L is the … The mass per unit length of the string.

79 Velocity of a Wave on a string
v= FT (m/l) FT =Tension in the string. m / L is the … The mass per unit length of the string.

80 Velocity of a Wave on a string
v= FT (m/l) FT =Tension in the string. m / L is the … The mass per unit length of the string.

81 Velocity of a Wave on a string
v= FT (m/l) FT =Tension in the string. m / L is the … The mass per unit length of the string.

82 Velocity of a Wave on a string
v= FT (m/l) FT =Tension in the string. m / L is the … The mass per unit length of the string or..

83 Velocity of a Wave on a string
v= FT (m/l) FT =Tension in the string. m / L is the … The mass per unit length of the string or.. Linear Density in kg/m

84 Types of waves transverse..
Oscillation is perpendicular to the wave motion (Electromagnetic waves are transverse waves

85 Types of waves Longitudinal Oscillation is parallel to the wave motion
(sound waves are longitudinal waves )

86 Types of waves Longitudinal Oscillation is parallel to the wave motion
(sound waves are longitudinal waves )

87 Speed of waves The speed of a wave is directly related to the..
Elastic force factor and…. The interia factor (density of the medium

88 Speed of waves The speed of a wave is directly related to the..
Elastic force factor and…. The interia factor (density of the medium

89 Wave intensity Intensity is…
The power transported across a unit area perpendicular the energy flow of a wave. Intensity = energy / time divided by area Intensity = power / area Intensity = Watt / meters squared. The intensity of a wave decreases by 1/r2

90 Wave intensity Intensity is…
The power transported across a unit area perpendicular the energy flow of a wave. Intensity = energy / time divided by area Intensity = power / area Intensity = Watt / meters squared. The intensity of a wave decreases by 1/r2

91 Wave intensity Intensity is…
The power transported across a unit area perpendicular the energy flow of a wave. Intensity = energy / time divided by area Intensity = power / area Intensity = Watt / meters squared. The intensity of a wave decreases by 1/r2

92 Wave intensity Intensity is…
The power transported across a unit area perpendicular the energy flow of a wave. Intensity = energy / time divided by area Intensity = power / area Intensity = Watt / meters squared. The intensity of a wave decreases by 1/r2

93 Wave intensity Intensity is…
The power transported across a unit area perpendicular the energy flow of a wave. Intensity = energy / time divided by area Intensity = power / area Intensity = Watt / meters squared. The intensity of a wave decreases by 1/r2

94 Wave intensity Intensity is…
The power transported across a unit area perpendicular the energy flow of a wave. Intensity = energy / time divided by area Intensity = power / area Intensity = Watt / meters squared. The intensity of a wave decreases by 1/r2

95 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

96 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

97 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

98 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

99 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

100 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

101 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

102 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

103 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

104 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

105 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

106 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

107 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

108 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 What is the intensity of a 75 dB sound wave? 75dB= 10 log ( I / Io) 7.5 = log ( I / Io) 7.5 = log I – log Io 7.5 = log I – log (1 x10-12 W/m2) 7.5 = log I – (-12) 7.5 – 12 = log I -4.5 = log I 3.16 x10-5 W / m2 = I

109 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 How many times more intense is a 120 dB sound wave compared to a 80 dB sound wave? 120dB – 80 dB = 40 db 40 dB / 10 = 4 104 = 10,000 times greater

110 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 How many times more intense is a 120 dB sound wave compared to a 80 dB sound wave? 120dB – 80 dB = 40 db 40 dB / 10 = 4 104 = 10,000 times greater

111 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 How many times more intense is a 120 dB sound wave compared to a 80 dB sound wave? 120dB – 80 dB = 40 db 40 dB / 10 = 4 104 = 10,000 times greater

112 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 How many times more intense is a 120 dB sound wave compared to a 80 dB sound wave? 120dB – 80 dB = 40 db 40 dB / 10 = 4 104 = 10,000 times greater

113 Decibels Relative measure of the perceived loudness of a sound wave
Decibels are based on a logarithmic scale dB=10 log ( Intensity of the sound wave ) ( Threshold of Human Hearing Intensity ) Threshold of Hearing = 1x10-12 W/m2 How many times more intense is a 120 dB sound wave compared to a 80 dB sound wave? 120dB – 80 dB = 40 db 40 dB / 10 = 4 104 = 10,000 times greater

114 Wave Reflection-Fixed end
A single wave crest which reflects off a fixed end will leave as a single wave trough. The wave crests puts a force up on the fixed end. The fixed puts an equal but opposite force on the string which produces an equal but opposite wave trough.

115 Wave Reflection-Fixed end
A single wave crest which reflects off a fixed end will leave as a single wave trough. The wave crests puts a force up on the fixed end. The fixed puts an equal but opposite force on the string which produces an equal but opposite wave trough.

116 Wave Reflection-Free end
A single wave peak which reflects off a free end will leave as a single wave peak.


Download ppt "Simple Harmonic Motion"

Similar presentations


Ads by Google